融合多基线观测信息的PolInSAR森林高反演正则化方法

The Regularization Method for Forest Height Inversion by Integrating MultiBaseline PolInSAR Observation Information

  • 摘要: RVoG(Random Volume Over Ground)模型是PolInSAR(Polarimetric InterferometricSynthetic Aperture Radar)森林高参数反演最为常用的散射模型,受模型复杂结构影响,利用单基线PolInSAR数据反演森林高参数存在严重观测信息不足问题,借助先验假设信息可实现森林高参数反演,但严重限制了森林高参数的反演精度。引入多基线观测数据,可补充观测信息,但森林高参数反演受到病态问题影响,难以提高森林高反演精度。鉴于此,本文基于最小二乘估计方法,融合多基线观测信息反演森林高参数;针对参数反演病态问题,采用正则化方法估计模型参数,降低模型病态性影响;并基于森林高参数估值方差与偏差随正则化参数变化规律选择正则化参数,有效提高森林高参数估计精度与稳定性;采用PolInSAR多基线数据进行森林高反演实验分析,常规森林高反演最小均方根误差为9.47米,决定系数为0.72,多基线正则化法森林高反演均方根误差为7.36米,决定系数为0.80,相较之下,新方法森林高反演均方根误差下降了22%,决定系数也相应提高,有效改善了PolInSAR森林高反演精度与稳定性,是一种可行有效的森林高反演方法。

     

    Abstract: Objectives: The inversion of forest height parameters based on the RVoG (Random Volume Over Ground) model and single baseline PolInSAR (Polarimetric Interferometric Synthetic Aperture Radar) observation data faces significant issues related to a lack of observational information. By incorporating multi-baseline observation data, it is possible to supplement the observational information of model parameters and enhance the accuracy of forest height parameter inversion. However, due to the differences in multi-baseline observation environments, the inversion model can become over-parameterized, leading to ill-posed problems in forest height parameter inversion, which severely restricts the inversion accuracy. Therefore, addressing the illposed problem of multi-baseline model parameter inversion is crucial for improving the accuracy and stability of forest height parameter inversion. Methods: A multi-baseline inversion model is constructed based on the theory of least squares estimation to achieve the fusion of multi-baseline observational information for forest height parameter inversion. Subsequently, a regularization method is employed to estimate the model parameters, thereby mitigating the effects of ill-posed problem and enhancing the accuracy of forest height parameter estimation. On this basis, a regularization parameter is selected based on the variance and bias of the forest height parameter estimates as they vary with regularization parameters, effectively improving the stability of forest height parameter estimation. Results: Experiments on forest height inversion using multi-baseline PolInSAR data indicate that the conventional forest height inversion has a root mean square error (RMSE) of 9.47 meters and a coefficient of determination (R2) of 0.72. In comparison, the RMSE for forest height inversion using the multi-baseline regularization method is 7.36 meters, with an R2 of 0.80. Thus, the new method demonstrates a 22% reduction in RMSE and a relative improvement in the coefficient of determination, effectively enhancing the accuracy and stability of forest height inversion using PolInSAR. Conclusions: The theory of least squares estimation can effectively integrate multi-baseline observational information for forest height parameter inversion;however, the influence of ill-posed problem is significant. By combining this with regularization method, the impact of ill-posedness can be reduced, thereby improving the accuracy and stability of forest height parameter estimation. This constitutes an effective method for PolInSAR multibaseline integrated forest height inversion.

     

/

返回文章
返回