Analysis of Changes in Maritime Transport Networks for Strategic Materials Affected by Attacks in the Red Sea
-
摘要: 海运作为全球贸易的主要运输方式, 其安全性对国际交易至关重要。近期红海地区袭击事件严重威胁了该关键航道的通行安全, 对全球战略物资供应链产生了较大影响。以全球船舶自动识别系统(Automatic Identification System, AIS) 数据为基础, 构建了涉及红海的典型全球战略物资海运网络, 并针对该网络从海运航线、 战略物资、 海运网络等角度, 分析了红海袭击事件所波及的战略物资海运网络变化, 得出了一些重要结论: 在航线变化方面, 亚洲和非洲的国家日均航次数量未受到影响, 其他大洲均呈数量下降趋势, 但所针对国家的平均降幅显著大于其他国家; 在战略物资方面, 铁矿石、 原油和液化石油气(Liquefied Petroleum Gas,LPG)运输量显著减少, 液化天然气(Liquefied Natural Gas, LNG) 的日均运输量未受影响; 在海运网络演变层面, 不同的战略物资网络呈现出了不同的变化特征, 其中铁矿石显示出较高的稳定性, 能源类物资(LNG、 LPG)呈现出了中等程度的稳定性, 粮食海运网络的波动性最强。研究结果有助于理解突发地缘政治事件对国际战略物资流动和全球供应链稳定性的潜在影响,对全球化背景下维护全球贸易流动和供应链稳定具有重要参考价值。Abstract: As a critical mode of transportation for global trade, the security of maritime shipping is essential to international commerce. Recent armed conflicts in the Red Sea region have significantly endangered the safe passage through this vital shipping lane and have had profound effects on the global supply chain of strategic commodities. Although an increasing volume of research focuses on tracking and analyzing the longterm impacts of the shipping system following major events, there remains an urgent need to swiftly capture and analyze real-time conflicts. Such research is critical for timely responses to the challenges confronting the maritime system, thus helping to mitigate negative impacts. We first analyze changes in the number of shipping routes to assess the impact on countries across different geographic regions and geopolitical relations worldwide. Next, based on material transport changes, we evaluate shifts in the tonnage of five strategic materials and the weighted importance of these materials. Furthermore, by examining alterations in the strategic materials maritime network, we identify the affected nodes and edges in the network. Subsequently, we assess the evolution patterns of five strategic material networks by analyzing changes in network indicators. Experiment results show that: in terms of affected maritime routes, there was no decline in the number of average daily voyages for countries in Asia and Africa, while all other continents experienced a decreasing trend in voyages. The rate of decline among affected countries was notably more significant compared to unaffected ones. From the perspective of strategic materials, iron, crude oil, and LPG shipments dominated the traffic. Except for LNG, which exhibited an increase in average daily traffic, other strategic materials displayed a similar downward trend by the end of the quarter. At the network evolution level, the core nodes of the maritime network remained stable in the face of shocks. Different strategic material networks demonstrated distinct adaptation patterns, with grain and LPG networks showing an increase in the average shortest path compared to the pre-shock period, while crude oil, LPG, and iron ore networks exhibited a more aggregated and short-distance adaptation pattern. Iron ore demonstrated high stability, energy materials (LNG, LPG, and crude oil) exhibited moderate stability, and the food maritime network was the most volatile. In short, we captured and analyzed the impacts of unforeseen events on the maritime transport network in a timely manner by integrating data from various sources and employing a limited time window and geographic scope approach. The assessment reveals significant disruptions in global transport patterns within the Red Sea region, highlighting the importance of maintaining global trade flows and supply chain stability in the context of globalization.
-
Keywords:
- strategic materials /
- maritime transport networks /
- network changes /
- Red Sea
-
-
[1] Valentine V. F., Benamara H., Hoffmann J. Maritime transport and international seaborne trade[J/OL]. Maritime Policy & Management, 2013, 40(3): 226-242. DOI: 10.1080/03088839.2013.782964.
[2] Rousset L., Ducruet C. Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns[J/OL]. Networks and Spatial Economics, 2020, 20(2): 423-447. DOI: 10.1007/s11067-019-09482-5.
[3] Jarumaneeroj P., Ramudhin A., Barnett Lawton J. A connectivity-based approach to evaluating port importance in the global container shipping network[J/OL]. Maritime Economics & Logistics, 2023, 25(3): 602-622. DOI: 10.1057/s41278-022-00243-9.
[4] Saito T., Shibasaki R., Murakami S., et al. Global Maritime Container Shipping Networks 1969– 1981: Emergence of Container Shipping and Reopening of the Suez Canal[J/OL]. Journal of Marine Science and Engineering, 2022, 10(5): 602. DOI: 10.3390/jmse10050602.
[5] Fang Z., Yu H., Lu F., et al. Maritime network dynamics before and after international events[J/OL]. Journal of Geographical Sciences, 2018, 28(7): 937-956. DOI: 10.1007/s11442-018-1514-9.
[6] Ye S, Luo X, Nan Y, et al. An improved star-borne GNSS-R convolutional neural network method for sea ice detection[J/OL]. Journal of Wuhan University (Information Science Edition), 2024, 49(1): 90-99. DOI:10.13203/j.whugis20220585.(叶世榕, 罗歆琪, 南阳, 等. 一种改进的星载GNSS-R卷积神经网络海冰检测方法[J/OL]. 武汉大学学报(信息科学版), 2024, 49(1): 90-99. DOI:10.13203/j.whugis20220585.) [7] Wan C., Yan X., Zhang D., et al. Analysis of risk factors influencing the safety of maritime container supply chains[J/OL]. International Journal of Shipping and Transport Logistics, 2019, 11(6): 476-507. DOI: 10.1504/IJSTL.2019.103872.
[8] Oliva S., Lazzeretti L. Adaptation, adaptability and resilience: the recovery of Kobe after the Great Hanshin Earthquake of 1995[J/OL]. European Planning Studies, 2017, 25(1): 67-87. DOI: 10.1080/09654313.2016.1260093.
[9] Paul J. A., Maloni M. J. Modeling the effects of port disasters[J/OL]. Maritime Economics & Logistics, 2010, 12(2): 127-146. DOI: 10.1057/mel.2010.2.
[10] Gao T., Lu J. The impacts of strait and canal blockages on the transportation costs of the Chinese fleet in the shipping network[J/OL]. Maritime Policy & Management, 2019, 46(6): 669-686. DOI: 10.1080/03088839.2019.1594423.
[11] Godoy L. A. Performance of Storage Tanks in Oil Facilities Damaged by Hurricanes Katrina and Rita[J/OL]. Journal of Performance of Constructed Facilities, 2007, 21(6): 441-449. DOI: 10.1061/(ASCE)0887-3828(2007)21:6(441).
[12] Wachtendorf T., Brown B., Holguin-Veras J. Catastrophe Characteristics and their Impact on Critical Supply Chains: Problematizing Materiel Convergence and Management Following Hurricane Katrina[J/OL]. Journal of Homeland Security and Emergency Management, 2013, 10(2): 497-520. DOI: 10.1515/jhsem-2012-0069.
[13] Shen Z., Xu X., Li J., et al. Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean[J/OL]. Sustainability, 2019, 11(21): 6176. DOI: 10.3390/su11216176.
[14] Xu H., Itoh H. Density economies and transport geography: Evidence from the container shipping industry[J/OL]. Journal of Urban Economics, 2018, 105: 121-132. DOI: 10.1016/j.jue.2017.09.002.
[15] Cao X., Lam J. S. L. Simulation-based catastrophe-induced port loss estimation[J/OL]. Reliability Engineering & System Safety, 2018, 175: 1-12. DOI: 10.1016/j.ress.2018.02.008.
[16] Rose A., Wei D. Estimating the Economic Consequences of a Port Shutdown: The Special Role of Resilience[J/OL]. Economic Systems Research, 2013, 25(2): 212-232. DOI: 10.1080/09535314.2012.731379.
[17] Wu D., Wang N., Yu A., et al. Vulnerability analysis of global container shipping liner network based on main channel disruption[J/OL]. Maritime Policy & Management, 2019, 46(4): 394-409. DOI: 10.1080/03088839.2019.1571643.
[18] Viljoen N. M., Joubert J. W. The vulnerability of the global container shipping network to targeted link disruption[J/OL]. Physica A: Statistical Mechanics and its Applications, 2016, 462: 396-409. DOI: 10.1016/j.physa.2016.06.111.
[19] Guo J., Wang S., Wang D., et al. Spatial structural pattern and vulnerability of China-Japan-Korea shipping network[J/OL]. Chinese Geographical Science, 2017, 27(5): 697-708. DOI: 10.1007/s11769-017-0903-9.
[20] Wang N., Wu N., Dong L. L., et al. A study of the temporal robustness of the growing global container-shipping network[J/OL]. Scientific Reports, 2016, 6(1): 34217. DOI: 10.1038/srep34217.
[21] Ducruet C., Notteboom T. The worldwide maritime network of container shipping: spatial structure and regional dynamics[J/OL]. Global Networks, 2012, 12(3): 395-423. DOI: 10.1111/j.1471-0374.2011.00355.x.
[22] Yang Z. L., Qu Z. Quantitative maritime security assessment: a 2020 vision[J/OL]. IMA Journal of Management Mathematics, 2016, 27(4): 453-470. DOI: 10.1093/imaman/dpw005.
[23] Shaw D. R., Grainger A., Achuthan K. Multi-level port resilience planning in the UK: How can information sharing be made easier?[J/OL]. Technological Forecasting and Social Change, 2017, 121: 126-138. DOI: 10.1016/j.techfore.2016.10.065.
[24] Asadabadi A., Miller-Hooks E. Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach[J/OL]. Transportation Research Part B: Methodological, 2018, 108: 281-298. DOI: 10.1016/j.trb.2018.01.004.
[25] Yang Y, Guo Y, Ju X, et al. Remote exploration of an important offshore channel: the Mandalay Channel[J]. China Mining Industry, 2023, 32(S1): 99-102.(杨怡, 郭雅, 鞠星, 等. 遥探境外重要海峡通道:曼德海峡[J]. 中国矿业, 2023, 32(S1): 99-102.) [26] Guo J., Guo S., Lv J. Potential spatial effects of opening Arctic shipping routes on the shipping network of ports between China and Europe[J/OL]. Marine Policy, 2022, 136: 104885. DOI: 10.1016/j.marpol.2021.104885.
[27] Continued tensions in the Red Sea heighten risks to the global supply chain [EB/OL]. [2024-03-04]. https://baijiahao.baidu.com/s?id=1791465405832074169&wfr=spider&for=pc. (红海局势持续紧张全球供应链风险加剧[EB/OL].) [28] Guo N., Xiong W., Ouyang X, et al. A multi-level similar sub-segment matching method for spatio-temporal trajectories[J/OL]. Journal of Wuhan University (Information Science Edition), 2022, 47(9): 1390-1397. DOI:10.13203/j.whugis20200170.(郭宁, 熊伟, 欧阳雪 , 等. 时空 轨迹 多层 级相 似子 段匹 配方 法[J/OL]. 武汉 大学 学报(信息 科学 版), 2022, 47(9): 1390-1397. DOI:10.13203/j.whugis20200170.) [29] Sheng Y, Bi S, Fan J, et al. Analysis of spatial and temporal patterns of traffic hotspots using traffic operation status indicators[J/OL]. Journal of Wuhan University (Information Science Edition), 2021, 46(5): 746-754. DOI:10.13203/j.whugis20190357.(盛宇裕, 毕硕本, 范京津, 等. 运用交通运行状况指标分析交通热点时空模式[J/OL]. 武汉大学学报(信息科学版), 2021, 46(5): 746-754. DOI:10.13203/j.whugis20190357.) [30] Li Z, Wang J, Hu Y, et al. Rapid assessment of transportation network damage under the impact of widespread flooding[J/OL]. Journal of Wuhan University (Information Science Edition), 2023, 48(7): 1039-1049+990. DOI:10.13203/j.whugis20220512.(李振洪, 王建伟, 胡羽丰, 等. 大范围洪涝灾害影响下的交通网受损快速评估[J/OL]. 武汉大学学报(信息科学版), 2023, 48(7): 1039- 1049+990. DOI:10.13203/j.whugis20220512.) [31] Wan Y, Liu Y. A network community discovery algorithm based on geographically weighted center node distance[J/OL]. Journal of Wuhan University (Information Science Edition), 2019, 44(10): 1545-1552. DOI:10.13203/j.whugis20180025.(万幼, 刘耀林. 基于 地理 加权 中心 节点 距离 的网 络社 区发 现算 法[J/OL]. 武汉 大学 学报(信息 科学 版), 2019, 44(10): 1545-1552. DOI:10.13203/j.whugis20180025.) [32] Wang Y, Li S, Ren L, et al. A feature-oriented method for automatic synthesis of cyberspace point group elements[J/OL]. Journal of Wuhan University (Information Science Edition), 2021, 46(3): 427-433. DOI:10.13203/j.whugis20200002.(王映雪, 李少梅, 任丽秋, 等. 面向特征的网络空间点群要素自动综合方法[J/OL]. 武汉大学学报(信息科学版), 2021, 46(3): 427-433. DOI:10.13203/j.whugis20200002.)
计量
- 文章访问数: 120
- HTML全文浏览量: 13
- PDF下载量: 24