甘肃积石山Ms 6.2地震深部构造特征和动力学过程

庞琪沛, 吴云龙, 徐景田, 史绪国, 张毅

庞琪沛, 吴云龙, 徐景田, 史绪国, 张毅. 甘肃积石山Ms 6.2地震深部构造特征和动力学过程[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
引用本文: 庞琪沛, 吴云龙, 徐景田, 史绪国, 张毅. 甘肃积石山Ms 6.2地震深部构造特征和动力学过程[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
Citation: PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085

甘肃积石山Ms 6.2地震深部构造特征和动力学过程

基金项目: 

国家自然科学基金 42274111

国家自然科学基金 41931074

国家自然科学基金 42374032

详细信息
    作者简介:

    庞琪沛,硕士生,研究方向为重力反演。pqp0111@163.com

    通讯作者:

    徐景田,教授。121446591@qq.com

Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas

  • 摘要:

    2023⁃12⁃18甘肃临夏回族自治州积石山县发生Ms 6.2地震,这是2023年造成中国人员伤亡最严重的地震。强震的孕育和发生受区域应力场及主要活动断裂带的控制,以及深部物性结构和动力学环境的影响。在震源区及周边区域开展深部构造特征和孕震环境研究,对于揭示该地区强震成因及开展防震减灾工作具有重要意义。基于XGM2019e全球重力场模型,利用小波多尺度分析和三维地壳密度结构反演等方法对布格重力异常数据进行了处理和分析,从重力学的角度分析了研究区域深部构造特征和动力学过程。结果表明,震源区及周边布格重力异常整体表现为负异常,变化范围在-170~-530 mGal之间,上、中地壳构造运动活跃,地壳内部出现高、低密度体错综复杂的现象。该区域位于阿拉善块体、鄂尔多斯块体和青藏高原块体之间的一条弧形重力梯度条带上,计算结果佐证了青藏高原物质在板块碰撞的影响下向东运移,在受到阿拉善块体和鄂尔多斯盆地的阻拦后沉积下来。综上,板块运动造成的大规模运动调节与地壳深浅部的相互作用共同促使了该地区地震的多发。

    Abstract:
    Objectives 

    On December 18, 2023, an Ms 6.2 earthquake occurred in Jishishan County, Gansu Province. The breeding and occurrence of strong earthquakes are controlled by the regional stress field and the main active fault zone, as well as the deep physical structure and dynamic environment. It is of great significance to study the deep structure characteristics and seismogenic environment in the focal area and its adjacent areas to reveal the causes of strong earthquakes and to carry out the work of earthquake prevention and disaster reduction.

    Methods 

    Based on the XGM2019e global gravity field model, the Bouguer gravity anomaly data are processed and analyzed by using wavelet multi-scale analysis and three-dimensional crustal density structure inversion, and the deep structural characteristics and dynamics processes in the study area are analyzed from the perspective of gravity mechanics.

    Results 

    The Bouguer gravity anomaly in the focal area and its adjacent areas is a negative anomaly, and the variation range is between -170–-530 mGal. The tectonic movement in the upper and middle crust of this region is active, and a complex phenomenon of high-density and low-density bodies appears inside the crust. This area is in an arc-shaped gravity gradient belt between the Alxa block, Ordos block and the Tibetan Plateau block. The calculation results show that the Tibetan Plateau material migrated eastward under the influence of plate collision and was deposited after being obstructed by the Alxa block and Ordos Basin.

    Conclusions 

    The large-scale motion adjustment caused by plate movement and the interaction between the deep and shallow parts of the crust have contributed to the frequent earthquakes in this region.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240085
  • 图  1   甘肃省积石山地震区域构造图

    注:F1:共和盆地北缘断裂;F2:共和盆地南缘断裂;F3:青海南山-循化南山断裂;F4:达坂山断裂;F5:天桥沟-黄羊川断裂;F6:军功断裂;F7:昌马-俄博断裂;F8:武威-天祝断裂;F9:拉脊山断裂;F10:礼县-罗家堡断裂;F11:西秦岭北缘断裂;F12:六盘山断裂;F13:老虎山断裂;F14:金强河断裂;F15:会宁-义岗断裂;F16:庄浪河断裂;F17:马衔山断裂;F18:临潭-宕昌断裂;F19:托莱山断裂;F20:光盖山-迭山北麓断裂;F21:海源断裂;F22:日月山断裂;F23:东昆仑断裂;F24:香山-天景山断裂;F25:迭部-白龙江断裂。

    Figure  1.   Tectonic Map of Jishishan Earthquake, Gansu Province

    图  2   震区布格重力异常分布图

    Figure  2.   Distribution Map of Bouguer Gravity Anomaly in Earthquake Area

    图  3   震区布格重力异常1~5阶小波细节图

    Figure  3.   1-5 Order Wavelet Transform Details of the Bouguer Gravity Anomalies on the Study Area

    图  4   P1、P2、P3、P4剖面地壳密度结构

    Figure  4.   Crustal Density Structure in P1,P2,P3 and P4 Profiles

    图  5   三维地壳密度反演结果

    Figure  5.   Three-Dimensional Crustal Density Inversion Results

    表  1   1~5阶小波细节近似场源深度

    Table  1   Approximated Source Depths of the1-5 Order Wavelet Details

    阶次近似场源深度/km对应地层
    123453.514.826.242.858.4沉积层上地壳中地壳上层中地壳下层下地壳
    下载: 导出CSV

    表  2   研究区域地壳密度结构

    Table  2   Crustal Density Structure in the Study Area

    地层深度/km密度/(g·cm-³)
    沉积层上地壳中地壳下地壳上地幔顶部0~510~2921~4439~59—2.445~2.4852.717~2.7412.780~2.7952.849~2.9523.340~3.420
    下载: 导出CSV
  • [1] 陈博, 宋闯, 陈毅,等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis 20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    [2] 黄观文, 景策, 李东旭,等. 甘肃积石山Ms 6.2地震对滑坡易发区的变形影响分析[J]. 武汉大学学报(信息科学版), 2023, DOI:10.13203/J.whugis20230490. doi: 10.13203/J.whugis20230490

    HUANG Guanwen, JING Ce, LI Dongxu, et al. Deformation Analysis of the Ms 6.2 Jishishan Earthquake on the Landslide Hazard Areas[J]. Geomatics and Information Science of Wuhan University, 2023, DOI:10.13203/J.whugis20230490. doi: 10.13203/J.whugis20230490

    [3] 方楠, 孙凯, 黄传超,等. 联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis20240036. doi: 10.13203/J.whugis20240036

    FANG Nan, SUN Kai, HUANG Chuanchao, et al. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20240036. doi: 10.13203/J.whugis20240036

    [4] 杨九元, 温扬茂, 许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501

    YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501

    [5] 刘振江, 韩炳权, 能懿菡,等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis20240008. doi: 10.13203/J.whugis20240008

    LIU Zhenjiang, HAN Bingquan, NAI Yihan, et al. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20240008. doi: 10.13203/J.whugis20240008

    [6] 王世广, 胥广银, 李帅,等. 2023年甘肃积石山Ms 6.2地震序列及发震构造分析[J]. 地震学报, 2024, 46(6): 953-968.

    WANG Shiguang, XU Guangyin, LI Shuai, et al. Analysis of Earthquake Sequence and Seismogenic Structure of the 2023 Ms 6.2 Jishishan Earthquake, Gansu Province, China[J]. Acta Seismologica Sinica, 2024, 46(6): 953-968..

    [7] 李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115.

    LI Zhimin, LI Yanjing, TIAN Qinjian, et al. Study on the Relationship Between Paleoseismic on Laji Mountain Fault and Catastrophic Event on Lajiashan Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115.

    [8] 甘肃临夏M 6.2地震震源破裂过程反演初步结果[EB/OL]. (2023-12-19). https://mp.weixin.qq.com/s/SuKbTgq8-0EV2F bNcdlYqQ.

    Preliminary Results of the Inversion of the Rupture Process of the Seismic Source of the Gansu Linxia M 6.2 Magnitude Earthquake[EB/OL]. (2023-12-19). https://mp.weixin.qq.com/s/SuKbTgq8-0EV2FbNcdlYqQ.

    [9] 郭祥云, 韩立波, 张旭, 等. 2023年12月18日甘肃积石山6.2级地震震源参数和破裂特征[J]. 地震科学进展, 2024, 54(1): 75-85.

    GUO Xiangyun, HAN Libo, ZHANG Xu, et al. Source Parameters and Rupture Characteristics of the M 6.2 Jishishan Earthquake in Gansu Province on December 18, 2023[J]. Progress in Earthquake Sciences, 2024, 54(1): 75-85.

    [10] 陈兆辉, 刘金钊, 张双喜, 等. 苍梧Ms 5.4地震孕震环境的多尺度重力场分析及动力学意义[J]. 大地测量与地球动力学, 2020, 40(2): 175-181.

    CHEN Zhaohui, LIU Jinzhao, ZHANG Shuangxi, et al. Multiscale Gravity Field Analysis and Dynamic Significance of Seismogenic Environment in Cangwu Ms 5.4 Earthquake, China[J]. Journal of Geodesy and Geodynamics, 2020, 40(2): 175-181.

    [11] 李莹, 田建慧, 李心怡, 等. 2022年9月5日四川泸定Ms 6.8地震深部构造特征[J]. 地球物理学报, 2023, 66(4): 1385-1396.

    LI Ying, TIAN Jianhui, LI Xinyi, et al. Deep Tectonic Pattern of the Luding Ms 6.8 Earthquake on 5th September 2022 in Sichuan Province, China[J]. Chinese Journal of Geophysics, 2023, 66(4): 1385-1396.

    [12] 王泽, 吴云龙, 张毅, 等. 巴东-秭归地区地壳密度反演及其构造特征[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1763-1770.

    WANG Ze, WU Yunlong, ZHANG Yi, et al. Crustal Density Inversion and Its Tectonic Structure in Badong-Zigui Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1763-1770.

    [13] 王鑫, 张景发, 姜文亮, 等. 基于布格重力数据研究郯庐断裂带江苏段深部构造[J]. 地球物理学进展, 2015, 30(4): 1516-1525.

    WANG Xin, ZHANG Jingfa, JIANG Wenliang, et al. Deep Structures of Jiangsu Segment of Tan-Lu Fault Zone Derived from Bouguer Gravity Data[J]. Progress in Geophysics, 2015, 30(4): 1516-1525.

    [14] 陈石, 王青华, 王谦身, 等. 云南鲁甸Ms 6.5地震震源区和周边三维密度结构及重力场变化[J]. 地球物理学报, 2014, 57(9): 3080-3090.

    CHEN Shi, WANG Qinghua, WANG Qianshen, et al. The 3D Density Structure and Gravity Change of Ludian Ms 6.5 Yunnan Epicenter and Surroun-ding Regions[J]. Chinese Journal of Geophysics, 2014, 57(9): 3080-3090.

    [15] 郑文俊, 张博譞, 袁道阳, 等. 阿拉善地块南缘构造活动特征与青藏高原东北缘向外扩展的最新边界[J]. 地球科学与环境学报, 2021, 43(2): 224-236.

    ZHENG Wenjun, ZHANG Boxuan, YUAN Dao-yang, et al. Tectonic Activity in the Southern Alashan Block and the Latest Boundary of Outward Expansion on the Northeastern Tibetan Plateau, China[J]. Journal of Earth Sciences and Environment, 2021, 43(2): 224-236.

    [16] 杨攀新, 熊仁伟, 胡朝忠, 等. 2023年甘肃积石山6.2级地震发震构造浅析[J]. 地震, 2024, 44(1): 153-159.

    YANG Panxin, XIONG Renwei, HU Chaozhong, et al. Preliminary Analysis of the Seismogenic Tectonics for the 2023 Jishishan Ms 6.2 Earthquake in Gansu Province[J]. Earthquake, 2024, 44(1): 153-159.

    [17]

    LEASE R O, BURBANK D W, CLARK M K, et al. Middle Miocene Reorganization of Deformation Along the Northeastern Tibetan Plateau[J]. Geology, 2011, 39(4): 359-362.

    [18]

    YUAN D Y, GE W P, CHEN Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies[J]. Tectonics, 2013, 32(5): 1358-1370.

    [19] 王鑫, 姜文亮, 张景发, 等. 青藏高原东北缘重力场深部结构及其动力学特征[J]. 地球物理学报, 2020, 63(3): 988-1001.

    WANG Xin, JIANG Wenliang, ZHANG Jingfa, et al. Deep Structure of the Gravity Field and Dynamic Characteristics of the Northeastern Margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3): 988-1001.

    [20]

    DRINKWATER M R, FLOBERGHAGEN R, HAAGMANS R, et al. GOCE: ESA’s First Earth Explorer Core Mission[M]. Dordrecht: Springer Netherlands, 2003.

    [21]

    TAPLEY B D, BETTADPUR S, WATKINS M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9): L09607.

    [22]

    ZINGERLE P, PAIL R, GRUBER T, et al. The Combined Global Gravity Field Model XGM2019e[J]. Journal of Geodesy, 2020, 94(7): 66.

    [23] 陈兆辉, 陈石, 张双喜, 等. 青藏高原东南缘多尺度重力场及构造含义[J]. 地震, 2021, 41(1): 25-39.

    CHEN Zhaohui, CHEN Shi, ZHANG Shuangxi, et al. Multi-scale Gravity Field of Southeastern Tibetan Plateau and Its Tectonic Significance[J]. Earthquake, 2021, 41(1): 25-39.

    [24]

    SPECTOR A, GRANT F S. Statistical Models for Interpreting Aeromagnetic Data[J]. Geophysics, 1970, 35: 293- 302.

    [25] 郭凌冬, 付广裕, 佘雅文, 等. 雅鲁藏布江桑日—墨脱段岩石圈均衡研究以及虚拟水库诱发地震危险性分析[J]. 地球物理学报, 2021, 64(9): 3220-3231.

    GUO Lingdong, FU Guangyu, SHE Yawen, et al. Lithosphericisostasy and Risk of Reservoir-Induced Earthquakes Along the Yarlung Zangbo River Between Sangri and Mêdog[J]. Chinese Journal of Geophysics, 2021, 64(9): 3220-3231.

    [26]

    LI Y G, OLDENBURG D W. 3-D Inversion of Magnetic Data[J]. Geophysics, 1996, 61(2): 394-408.

    [27]

    LI Y G, OLDENBURG D. 3-D Inversion of Gravity Data[J]. Geophysics, 1998, 63(1): 109-119.

    [28]

    OLDENBURG D W. The Inversion and Interpretation of Gravity Anomalies[J]. Geophysics, 1974, 39(4): 526.

    [29]

    ZHANG Y, YAN J G, LI F, et al. A New Bound Constraints Method for 3-D Potential Field Data Inversion Using Lagrangian Multipliers[J]. Geophysical Journal International, 2015, 201(1): 267-275.

    [30] 张站稳, 高国明, 王树琴, 等. 青藏高原东北缘及其邻区重力异常小波多尺度特征分析[J]. 云南大学学报(自然科学版), 2023, 45(4): 866-874.

    ZHANG Zhanwen, GAO Guoming, WANG Shu-qin, et al. Study on the Transverse Variation Characteristics of Gravity Anomalies in the Northeastern Margin of the Tibetan Plateau and Its Adjacent Areas, Based on Wavelet Multi-scale Analysis[J]. Journal of Yunnan University (Natural Sciences Edition), 2023, 45(4): 866-874.

    [31] 李健, 周云轩, 许惠平. 重力场数据处理中小波母函数的选择[J]. 物探与化探, 2001, 25(6): 410-417.

    LI Jian, ZHOU Yunxuan, XU Huiping. The Selection of Wavelet Generating Functions in Data-Processing of Gravity Field[J]. Geophysical and Geochemical Exploration, 2001, 25(6): 410-417.

    [32] 方东, 胡敏章, 郝洪涛. 青藏高原东南缘重力场多尺度分析及其构造含义[J]. 地震地质, 2021, 43(5): 1208-1232.

    FANG Dong, HU Minzhang, HAO Hongtao. Multi-scale Analysis of the Gravity Field in the Southeastern Qinghai-Tibet Plateau and Its Tectonic Implications[J]. Seismology and Geology, 2021, 43(5): 1208-1232.

    [33] 刁博, 王家林, 程顺有. 重力异常小波多分辨分析分解阶次的确定[J]. 地球科学, 2007, 32(4): 564-568.

    DIAO Bo, WANG Jialin, CHENG Shunyou. The Confirmation of Decomposition Level in Wavelet Multi-resolution Analysis for Gravity Anomalies[J]. Earth Science, 2007, 32(4): 564-568.

    [34] 杨文采, 侯遵泽, 于常青. 青藏高原地壳的三维密度结构和物质运动[J]. 地球物理学报, 2015, 58(11): 4223-4234.

    YANG Wencai, HOU Zunze, YU Changqing. Three-Dimensional Density Structure of the Tibetan Plateau and Crustal Mass Movement[J]. Chinese Journal of Geophysics, 2015, 58(11): 4223-4234.

    [35] 楼海, 王椿镛. 川滇地区重力异常的小波分解与解释[J]. 地震学报, 2005, 27(5): 515-523.

    LOU Hai, WANG Chunyong. Wavelet Analysis and Interpretation of Gravity Data in Sichuan-Yunnan Region, China[J]. Acta Seismologica Sinica, 2005, 27(5): 515-523.

    [36] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102.

    YUAN Daoyang, ZHANG Peizhen, LEI Zhong-sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102.

    [37]

    HARRIS N. Channel Flow and the Himalayan–Tibetan Orogen: A Critical Review[J]. Journal of the Geological Society, 2007, 164(3): 511-523.

    [38] 刘威, 王绪本, 王向鹏, 等. 小波多尺度分析在青藏高原东缘重力场的应用[J]. 物探化探计算技术, 2022, 44(1): 77-87.

    LIU Wei, WANG Xuben, WANG Xiangpeng, et al. Application of Wavelet Multi-scale Analysis in the Gravity Field on the Eastern Edge of the Qinghai-Tibet Plateau[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(1): 77-87.

    [39]

    TIAN X B, LIU Z, SI S K, et al. The Crustal Thickness of NE Tibet and Its Implication for Crustal Shortening[J]. Tectonophysics, 2014, 634: 198⁃207.

    [40]

    SHI L, LI Y H, WANG W L, et al. Crustal Structure Beneath the Northeastern Margin of the Tibetan Plateau Constrained by Receiver Functions and Gra-vity Data[J]. Tectonophysics, 2022, 841: 229584.

    [41] 杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4): 534-541.

    YANG Wencai, SHI Zhiqun, HOU Zunze, et al. Discrete Wavelet Transform for Multiple Decomposition of Gravity Anomalies[J]. Chinese Journal of Geophysics, 2001, 44(4): 534-541.

    [42]

    SCHOLZ C H. The Mechanics of Earthquakes and Faulting[D]. UK: University of Cambridge, 1990.

    [43] 张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 2013, 43(10): 1607-1620.

    ZHANG Peizhen, DENG Qidong, ZHANG Zhuqi, et al. Active Faults, Earthquake Disasters and Their Dynamic Processes in Chinese Mainland[J]. Scientia Sinica (Terrae), 2013, 43(10): 1607-1620.

    [44]

    ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface Deformation and Lower Crustal Flow in Eastern Tibet[J]. Science, 1997, 276(5313): 788-790.

    [45]

    CLARK M K, ROYDEN L H. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow[J]. Geology, 2000, 28(8): 703.

    [46] 金胜, 魏文博, 汪硕, 等. 青藏高原地壳高导层的成因及动力学意义探讨: 大地电磁探测提供的证据[J]. 地球物理学报, 2010, 53(10): 2376-2385.

    JIN Sheng, WEI Wenbo, WANG Shuo, et al. Discussion of the Formation and Dynamic Signification of the High Conductive Layer in Tibetan Crust[J]. Chinese Journal of Geophysics, 2010, 53(10): 2376-2385.

图(5)  /  表(2)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  24
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 网络出版日期:  2024-03-31
  • 刊出日期:  2025-02-04

目录

    /

    返回文章
    返回