基于InSAR技术的甘肃积石山震区活动滑坡识别与动态形变监测

刘晓杰, 赵超英, 李滨, 王文达, 张勤, 高杨, 陈立权, 王宝行, 郝君明, 杨校辉

刘晓杰, 赵超英, 李滨, 王文达, 张勤, 高杨, 陈立权, 王宝行, 郝君明, 杨校辉. 基于InSAR技术的甘肃积石山震区活动滑坡识别与动态形变监测[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
引用本文: 刘晓杰, 赵超英, 李滨, 王文达, 张勤, 高杨, 陈立权, 王宝行, 郝君明, 杨校辉. 基于InSAR技术的甘肃积石山震区活动滑坡识别与动态形变监测[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
Citation: LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054

基于InSAR技术的甘肃积石山震区活动滑坡识别与动态形变监测

基金项目: 

国家重点研发计划 2022YFC3004302

甘肃省科技重大专项 23ZDFA007

甘肃省青年科技基金 23JRRA830

详细信息
    作者简介:

    刘晓杰,博士,博士后,讲师,研究方向为InSAR地质灾害监测。Xiaojie_Liu_cd@163.com

    通讯作者:

    赵超英,博士,教授。zhaochaoying@163.com

Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology

  • 摘要:

    2023-12-18,甘肃省临夏回族自治州积石山县发生Ms 6.2地震,造成150余人遇难及大量建筑物倒塌,并诱发了同震滑坡灾害。此外,地震还将加速活动滑坡的形变,严重威胁人民生命财产和基础设施的安全,亟需开展震区活动滑坡快速识别与动态形变监测研究。基于此,提出了一种基于合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)技术的地震区活动滑坡自动化识别与动态形变监测框架。采用2017年3月至2023年12月的升轨与降轨Sentinel-1影像,反演获得InSAR相位梯度速率、年平均形变速率及时间序列,建立了DeepLabv3深度学习滑坡自动化识别方法,快速绘制研究区域的活动滑坡编目图,并开展滑坡空间分布特征研究;并采用序贯InSAR技术实现了新获得的合成孔径雷达影像的快速处理,进行滑坡形变的动态监测,及时捕获地震造成的滑坡形变加速信号。研究结果表明,在积石山震中70 km范围内分布有2 021个不同尺度的潜在活动滑坡,集中在6个高密度分布区,主要分布在距断层22 km、距河流28 km、距道路10 km范围内和高程3 400 m以下、坡度为15°~35°的区域,且主要沿着正北向、东北及正东向分布;本次地震造成积石山县及黄河沿线部分区域的滑坡形变出现显著加速,降低了斜坡的稳定性,现场调查验证了动态形变监测结果的可靠性。所提方法可为类似地震事件的活动滑坡快速调查及动态监测提供重要技术指导,研究成果可为震后灾区重建及次生滑坡灾害风险评估提供科学数据支撑。

    Abstract:
    Objectives 

    On December 18, 2023, an Ms 6.2 earthquake occurred in Jishishan County, Gansu Province, China. The earthquake caused more than 150 deaths and extensive collapse of buildings, and triggered a mass of coseismic landslides. In addition, the earthquake will also accelerate the deformation of active landslides, seriously threatening the safety of people's lives and property and infrastructure. Therefore, it is imperative to carry out research on the rapid identification and dynamic deformation monitoring of active landslides in earthquake-affected areas.

    Methods 

    We propose a novel framework for the automatic identification and dynamic deformation monitoring of active landslides in earthquake areas based on interferometric synthetic aperture radar (InSAR) technology. First, the InSAR phase-gradient rate, deformation rate and time series are calculated by utilizing both the ascending and descending Sentinel-1 synthetic aperture radar (SAR) images acquired during March 2017 to December 2023; and then, an approach for the automatic identification of active landslides is established using DeepLabV3 deep learning algorithm. As a result, the inventory map of active landslides in the study area was produced using the proposed method, and the spatial distribution characteristics of the landslides were investigated. Second, newly acquired SAR images were rapidly processed using the sequential InSAR method, thus achieving the dynamic deformation monitoring of landslides and the timely capture of earthquake-induced acceleration deformation signal.

    Results 

    The InSAR results revealed that there are 2 021 active landslides with varying dimensions within a 70 km radius of the epicenter, and six regions exhibited particularly dense landslide distributions. The spatial distribution of the mapped landslides exhibited a clustering pattern: primarily within 22 km of faults, 28 km of rivers, and 10 km of roads. Additionally, they were predominantly located at elevations below 3 400 m and on slopes ranging 15°-35°, and also mainly distributed along the north, north-east, and east directions.

    Conclusion 

    The deformation of some detected landslides within Jishishan County and along the Yellow River were significantly accelerated as a result of the earthquake event, thus reducing the stability of the slope. The reliability of the InSAR-derived results was verified through the field geological investigation. The proposed method offers significant technical value for the rapid investigation and dynamic monitoring of active landslides in similar seismic events, and the research findings provide scientific data support for post-earthquake reconstruction and secondary landslide disaster risk assessment.

  • 经典平差模型和最小二乘估计理论[1]在大地测量等众多科学研究和工程领域中应用广泛,其中,高斯-马尔科夫模型(Gauss-Markov model, GMM)最为常用,而高斯-赫尔默特模型(GaussHelmert model, GHM)可视为经典平差模型的一般通用形式。在实际应用中,坐标转换、回归模型、数字地面模型和大地测量反演等平差模型的系数矩阵包含随机的观测误差,从而使得GMM扩展为随机系数矩阵的变量含误差(errors-invariables, EIV)模型[2]。文献[3]提出同时顾及观测向量和系数矩阵中随机误差的整体最小二乘(total least squares, TLS)估计算法。TLS的非线性特征导致其受制于计算机技术的发展,直至20世纪80年代,文献[4]将TLS引入数值分析领域并提出奇异值分解算法,TLS才开始广泛应用于各专业领域并取得丰富的研究成果。文献[2]中对TLS进行了改进和扩展;文献[5]从TLS的算法、统计特性和可靠性研究等方面综述了TLS方法的研究进展。当误差相关且精度不等时,采用加权整体最小二乘估计(weighted total least squares, WTLS)方法进行求解。文献[6]研究了基于高斯-牛顿迭代法的WTLS算法,该算法假设权矩阵为特殊情况,得到的解在形式上与最小二乘(least squares, LS)解相同;文献[7]研究了在任意权矩阵的一般情况下的WTLS算法;文献[8]研究了特殊结构下WTLS算法的迭代方法并将其应用于实际场景;文献[9-12]研究了附有等式和不等式约束情况下的WTLS算法;文献[13]研究了稳健WTLS算法。

    通过对EIV模型的形式进行变换,文献[14]提出部分EIV(partial EIV, PEIV)模型,提高了系数矩阵仅含部分随机量情况下的计算效率。文献[15]对PEIV模型进行线性化,推导了PEIV模型的LS算法。文献[16-17]从模型的一般性出发,将EIV模型扩展至通用EIV模型,将经典平差的GHM中观测向量的系数矩阵和参数向量的系数矩阵由固定矩阵推广为随机矩阵,涵括随机系数矩阵的各类情况,同时推导了通用EIV模型在任意权矩阵情况下的一般性WTLS算法。

    通用EIV模型的非线性使得该算法在估计量较多时计算量大。本文利用非线性平差原理,将通用EIV模型展开后的二阶项纳入平差方程的常数项,从而将其转化为GHM形式,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares, LTLS)算法。相较于WTLS算法,LTLS算法提高了通用EIV模型的计算效率,当参数向量初始值与最优值相差较大时,提升了迭代收敛速度。

    GHM的形式为:

    $$ \mathit{\boldsymbol{A}}\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{BX}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (1)

    式中,yvy分别为n×1维观测值向量和观测值改正数向量;Xu×1维参数向量;A为观测值向量对应的f×n维系数矩阵;B为参数向量对应的f×u维系数矩阵;wf×1维常数向量;在经典平差函数模型的定义中,AB均不含随机误差,为固定矩阵。

    当参数向量的系数矩阵B含随机误差时,GHM(式(1))扩展为经典EIV模型。当观测值向量的系数矩阵A和参数向量的系数矩阵B均含随机误差时,GHM(式(1))扩展为通用EIV平差模型[16]:

    $$ \left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (2)

    式中,AVA分别为观测值向量对应的f×n维系数矩阵及其改正数矩阵;BVB分别为参数向量对应的f×u维系数矩阵及其改正数矩阵。由于ABy均为随机矩阵,则通用EIV的随机模型为:

    $$ \mathit{\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{A}})}\\ {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{B}})}\\ \mathit{\boldsymbol{y}} \end{array}} \right],\mathit{\boldsymbol{v}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)}\\ {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{A}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{B}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (3)
    $$ \mathit{\boldsymbol{D}}(\mathit{\boldsymbol{L}}) = \delta _0^2{\mathit{\boldsymbol{P}}^{ - 1}} = \delta _0^2\mathit{\boldsymbol{Q}} = \delta _0^2\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{A}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{AB}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{Ay}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{BA}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{B}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{By}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yA}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yB}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (4)

    式中,vec(.)表示将矩阵按列向量化;Lv分别为观测数据的k×1维观测值向量及其改正数向量,包括ABy中所有观测值及其改正数,其中k=fn+fu+n; PQD(L)分别为L的权矩阵、协因数矩阵和方差协方差矩阵;δ02为单位权方差。

    根据TLS准则,通用EIV平差模型的求解可转化为最优化估计问题[16]:

    $$ \left\{ {\begin{array}{*{20}{l}} {\min {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}}}\\ {s.t.{\rm{ }}\left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}}} \end{array}} \right. $$ (5)

    相应目标函数为:

    $$ \begin{array}{*{20}{c}} {\mathit{\Phi }(\mathit{\boldsymbol{r}},\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{X}}) = {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}} + 2{\mathit{\boldsymbol{\lambda }}^{\rm{T}}}\left( {\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + } \right.}\\ {\left. {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + \mathit{\boldsymbol{BX}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}}} \right)} \end{array} $$ (6)

    将目标函数对估计量分别求偏导并令其等于0,得到非线性方程组:

    $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat X}}}} = 2\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (7)
    $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat v}}}} = 2\left( {\mathit{\boldsymbol{P\hat v}} + {{\mathit{\boldsymbol{\hat C}}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (8)
    $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat \lambda }}}} = 2(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{\hat C\hat v}} + \mathit{\boldsymbol{w}}) = \mathit{\boldsymbol{0}} $$ (9)

    式中,$ {\boldsymbol{C}}=\left[{\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} \boldsymbol{X}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} A+\boldsymbol{V}_{{\boldsymbol{A}}}\right] ; \hat{{\boldsymbol{v}}}, \hat{\boldsymbol{X}} $分别为观测值向量和参数向量的估计值。

    根据式(7)~式(9)可导出:

    $$ \mathit{\boldsymbol{\hat v}} = - \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{\hat C}}^{\rm{T}}}\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{w}}) $$ (10)
    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat X}} = - {{\left[ {\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}\mathit{\boldsymbol{B}}} \right]}^{ - 1}}\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + } \right.}\\ {\left. {\mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{w}})} \end{array} $$ (11)

    式中,$ \hat{\boldsymbol{Q}}_{C}=\hat{\boldsymbol{C}} \boldsymbol{Q} \hat{\boldsymbol{C}}^{\mathrm{T}} $。

    以式(2)的LS解作为初始值,根据式(10)和式(11)进行迭代计算可得通用EIV模型的WTLS最优解。

    通用EIV模型是非线性模型,观测值矩阵和系数矩阵均为随机量,WTLS算法的计算量随着待估量个数增多将迅速增加。将式(2)展开,利用非线性函数平差原理[18]将二阶项作为模型误差纳入方程的常数项,从而将通用EIV模型转化为线性的GHM,推导出通用EIV模型的LTLS算法。

    X=X0+x,将式(2)展开得:

    $$ \begin{array}{c} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}{\mathit{\boldsymbol{X}}_0} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{Bx}} + (\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \\ \left. {\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}} \end{array} $$ (12)

    式(12)可表示为:

    $$ \begin{array}{*{20}{c}} {\left[ {\left( {{\mathit{\boldsymbol{y}}^{\rm{T}}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right) + \left( {\mathit{\boldsymbol{X}}_0^{\rm{T}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right) + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right] + }\\ {\mathit{\boldsymbol{Bx}} + \left( {\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}}} \end{array} $$ (13)

    则通用EIV模型的线性化形式为:

    $$ {\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}} + \mathit{\boldsymbol{Bx}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} = \mathit{\boldsymbol{0}} $$ (14)

    式中,$ {\boldsymbol{A}}_{{\boldsymbol{l}}}=\left[\begin{array}{llll} {\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I_{f}}} & \boldsymbol{X}_{0}^{\mathrm{T}} & \otimes {\boldsymbol{I_{f}}} & {\boldsymbol{A}} \end{array}\right] ; \ {\boldsymbol{v_{l}}}= \left[\begin{array}{c} \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{A}}}\right) \\ \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{B}}}\right) \\ \boldsymbol{v}_{{\boldsymbol{y}}} \end{array}\right] ; \boldsymbol{w}_{{\boldsymbol{l}}}=\boldsymbol{w}+\boldsymbol{Ay} + {\boldsymbol{B}} \boldsymbol{X}_{0}+\boldsymbol{V}_{{\boldsymbol{A}}} \boldsymbol{v}_{{\boldsymbol{y}}}+\boldsymbol{V}_{{\boldsymbol{B}}} {\boldsymbol{x}}$为常数项,即将式(2)按泰勒展开略去的二阶项VAvy+VBx作为模型误差纳入常数项。

    由式(14)可知,线性化后的通用EIV模型与GHM形式一致,可使用最小二乘法得到观测值向量和参数向量:

    $$ \mathit{\boldsymbol{\hat x}} = - \mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{bb}}}^{ - 1}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}{\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} $$ (15)
    $$ {{\mathit{\boldsymbol{\hat v}}}_\mathit{\boldsymbol{l}}} = - \mathit{\boldsymbol{Q}}{{\mathit{\boldsymbol{\hat A}}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}\left( {\mathit{\boldsymbol{B\hat x}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}}} \right) $$ (16)

    式中,$ \boldsymbol{N}_{{\boldsymbol{a a}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{Q} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} ; \boldsymbol{N}_{{\boldsymbol{b b}}}= {\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{N}_{{\boldsymbol{a a}}}^{-1} {\boldsymbol{B}} $; Q为观测值向量的协因数矩阵。

    通用EIV模型的LTLS算法步骤如下:

    1)将实际模型表示为式(2),将观测数据代入得到ABy矩阵,并给出观测值数据的协因数阵Q,包括观测值向量Qy、观测值向量系数矩阵QA、参数向量系数矩阵QB

    2)计算通用EIV模型的LS解作为初始参数解:$ \hat{\boldsymbol{X}}^{0}=-\left({\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A }}\boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} {\boldsymbol{B}}\right)^{-1} {\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A}} \boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} · ({\boldsymbol{A y}}+{\boldsymbol{w}})$, 观测值向量改正数初始值取0。

    3)根据式(15)和式(16)进行迭代计算,每次迭代将上一次估计值作为初始值代入新的迭代过程,直至前后两次估计值之差小于设定阈值。

    GHM按泰勒级数展开仅包含常数项、一阶项(二阶及以上项全部为零),将二阶项纳入线性化后的常数项,该方法极大地减弱了线性化引起的模型误差。因此,在同样以LS解作为初值的情况下,GHM线性化的LTLS解与WTLS解的收敛性一致。此外,根据文献[19]中EIV模型LS解偏差的研究结果,在当前测量技术手段和观测精度条件下,以有偏的LS解作为初值,能够保证TLS迭代计算收敛,除非出现极特殊情况导致LS初始解严重偏离最优值。

    参考GHM,式(2)的LTLS算法估计结果的精度计算式为:

    $$ \left\{ {\begin{array}{*{20}{l}} {\hat \delta _0^2 = \mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}^{\rm{T}}\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}}/\mathit{r}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}}) = {{\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}{{\left( {{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}} \right)}^{ - 1}}\mathit{\boldsymbol{B}}} \right)}^{ - 1}}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}}) = \mathit{\boldsymbol{Q}} - \mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}\left( {\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{\hat x}}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}} \right){\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{Q}}} \right)}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat x}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}})}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat L}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}})} \end{array}} \right. $$ (17)

    式中,多余观测数r=n-t; n为观测值个数;t为必要观测值个数;r与GHM的多余观测数相同;$ \boldsymbol{N}_{{\boldsymbol{A}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{P}^{-1} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} $。

    按照LTLS算法步骤设计实验,比较LTLS算法与WTLS算法的计算结果,验证LTLS算法的正确性、高效性和可行性。实验1设计模拟数据,比较分析单组实验结果和1 000组实验统计结果,验证LTLS算法的正确性;实验2在待估计量数目取不同量级时,比较两种算法的计算时间,验证LTLS算法的高效性;实验3通过实例验证LTLS算法的可行性。

    在通用EIV模型(式(2))中,设置参数真值X=[5 10]T,系数矩阵AB中随机量的中误差分别设为0.01和0.02,观测向量y的中误差设为0.03。ABy和常数向量w的模拟数据如下:

    $$ \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} {12.469}&{11.096}&{15.872}&{11.725}\\ {8.883}&{10.291}&{2.929}&{3.666}\\ {12.321}&{1.109}&{6.392}&{15.809}\\ {3.551}&{12.104}&{3.867}&{1.257} \end{array}} \right], $$
    $$ \mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{l}} {10.410}&{17.544}\\ {18.033}&{15.171}\\ {18.631}&{15.855}\\ {15.671}&{11.878} \end{array}} \right], $$
    $$ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {27.543}\\ {20.727}\\ {20.839}\\ {25.033} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{c}} { - 1425.323}\\ { - 852.619}\\ { - 1142.913}\\ { - 658.407} \end{array}} \right]。 $$

    采用LTLS算法和WTLS算法的估计结果如表 1所示,LTLS参数解与WTLS参数解完全相等,验证了LTLS算法的正确性。

    表  1  参数解及其方差估计值
    Table  1.  Parameter Values and Mean Square Deviations
    算法 参数解 中误差
    $ \hat {\boldsymbol{X}} _1 $ $ \hat {\boldsymbol{X}} _2 $ $ σ _{\hat{\boldsymbol{X}}_1} $ $ σ_ {\hat{\boldsymbol{X}}_2} $
    LTLS算法 5.012 551 9.994 964 0.039 9 0.051 9
    WTLS算法 5.012 551 9.994 964 0.039 9 0.051 9
    下载: 导出CSV 
    | 显示表格

    为了进一步验证LTLS算法的正确性,首先采用模拟的1 000组数据计算LTLS和WTLS参数解的均值$ {\rm{avg}} (\hat {\boldsymbol{X}} _1) 和 {\rm{avg}} (\hat {\boldsymbol{X}} _2) $,并将参数解均值代入式(17),求得LTLS参数解的协因数阵估值$ {\boldsymbol{Q}}(\hat {\boldsymbol{X}} )$,然后利用参数真值求得精确的参数协因数阵$ \overline{\boldsymbol{Q}}(\hat{\boldsymbol{X}})={\boldsymbol{E}}_{{\boldsymbol{X}}}^{\mathrm{T}} \boldsymbol{E}_{{\boldsymbol{X}}} /(m-n) , {\boldsymbol{E}}_{{\boldsymbol{X}}}=\left[\begin{array}{ll} \hat{{\boldsymbol{X}}}_{1}^{(j)}-5 & \hat{{\boldsymbol{X}}}_{2}^{(j)}-10 \end{array}\right] $,计算结果见表 2。1 000组数据的LTLS参数解和WTLS参数解与参数真值偏差的统计分析见图 1图 2

    表  2  1000组实验的参数解均值和协因数阵
    Table  2.  Average Parameter Values and Co⁃variance Matrix in 1 000 Experiments
    算法 参数解均值 协因数阵
    $ {\rm{avg}} ( \hat{\boldsymbol{X}}_1) $ $ {\rm{avg}} ( \hat{\boldsymbol{X}}_2) $ $ {\boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $ $ \bar{ \boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $
    LTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9
    −0.005 1 0.007 3 −0.004 9 0.007 2
    WTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9
    −0.005 1 0.007 3 −0.004 9 0.007 2
    下载: 导出CSV 
    | 显示表格
    图  1  1 000组实验数据的LTLS参数解与参数真值偏差统计图
    Figure  1.  Statistical Graph of Deviations Between Truth Values and Parameter Values Soluted by LTLS in 1 000 Experiments
    图  2  1 000组实验数据的WTLS参数解与参数真值偏差统计图
    Figure  2.  Statistical Graph of Deviations Between Truth Values and Parameter Values Soluted by WTLS in 1 000 Experiments

    表 2图 1图 2可以看出,LTLS算法与WTLS算法的统计结果完全一致,说明在每次实验中两种算法所求参数解均一致,验证了LTLS算法的正确性。同时两种计算协因数阵的方法结果非常相近,验证了参数协因数阵一阶近似估计公式(17)的有效性[17]

    为分析LTLS算法的计算效率,设计通用EIV模型中待估计量个数在不同的数量级情况,采用LTLS算法和WTLS算法计算100组模拟数据的平均迭代次数N、平均解算时间t和减少比例(LTLS算法较WTLS算法减少的平均解算时间与WTLS算法平均解算时间之比),结果见表 3

    表  3  LTLS算法和WTLS算法计算效率的比较
    Table  3.  Comparison of Computational Efficiency Between LTLS Algorithm and WTLS Algorithm
    待估量数量 NLTLS NWTLS tLTLS tWTLS 减少比例/%
    10 5.18 4.5 0.224 ms 0.191 ms
    100 5.04 6.36 0.681 ms 0.724 ms 5.9
    1 000 5 6.75 0.033 s 0.044 s 25.0
    10 000 5 7.5 2.681 s 3.909 s 31.4
    下载: 导出CSV 
    | 显示表格

    表 3可以看出,两种算法每次迭代的平均时间基本一致;当模型估计量数量较少时,两种算法的效率基本相当,随着估计量的数量级逐渐增大,LTLS算法的效率高于WTLS算法。原因在于GHM按泰勒级数展开后,仅包含常数项、一阶项(二阶及以上项全部为零),LTLS算法将二阶项纳入常数项,减小了线性化引起的模型误差,迭代计算收敛更快,迭代次数减少,使得计算效率提高。

    本文采用的摄影测量实例示意图如图 3所示,由3个地面摄像机S1S2S3拍摄两个目标点P1P2组成,相机主距f=100 mm,距离l1l2l3l4l5l6y1y2的观测值和中误差见表 4

    图  3  摄影测量实例图
    Figure  3.  Diagram of the Photogrammetry Example in This Paper
    表  4  距离观测值及其中误差
    Table  4.  Distance Observations and Standard Deviations
    统计项 l1/mm l2/mm l3/mm l4/mm l5/mm l6/mm y1/m y2/m
    观测值 14.1 16.6 6.1 7.1 22.1 26.3 10.0 8.0
    中误差 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05
    下载: 导出CSV 
    | 显示表格

    根据图 3可得到误差方程:

    $$ \left\{\begin{array}{l} l_{1} x_{2}-f x_{1}=0 \\ l_{2} x_{4}-f x_{3}=0 \\ l_{3} x_{2}+f y_{1}+f x_{1}=0 \\ l_{4} x_{4}+f y_{1}+f x_{3}=0 \\ l_{5} x_{2}-f y_{1}-f y_{2}+f x_{1}=0 \\ l_{6} x_{4}-f y_{1}-f y_{2}+f x_{3}=0 \end{array}\right. $$ (18)

    构建通用EIV模型来估计点P1和点P2的坐标,由误差方程可得:

    $$ \begin{array}{l} \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0\\ { - f}&0\\ { - f}&0\\ { - f}&{ - f}\\ { - f}&{ - f} \end{array}} \right],\mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} { - f}&{{l_1}}&0&0\\ 0&0&{ - f}&{{l_2}}\\ f&{{l_3}}&0&0\\ 0&0&f&{{l_4}}\\ f&{{l_5}}&0&0\\ 0&0&f&{{l_6}} \end{array}} \right],\\ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {{y_1}}\\ {{y_2}} \end{array}} \right],\mathit{\boldsymbol{x}} = \left[ {\begin{array}{*{20}{l}} {{x_1}}\\ {{x_2}}\\ {{x_3}}\\ {{x_4}} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}} \right] \end{array} $$ (19)

    由式(19)可知矩阵A不含有随机误差,则该矩阵的改正数矩阵为零矩阵。采用LTLS算法和WTLS算法解算,设置阈值为1×10-8,结果见表 5表 6。两种方法所得坐标估值和距离观测值估值完全一致,该实例表示为通用EIV模型时系数矩阵中待估计量较少,所以两个算法收敛速度相差不大。

    表  5  P1和点P2的坐标估值/m
    Table  5.  Coordinate Estimates of P1 and P2 /m
    算法 坐标估值
    $ \hat x_1 $ $ \hat x_2 $ $ \hat x_3 $ $ \hat x_4 $
    LTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9
    WTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9
    下载: 导出CSV 
    | 显示表格
    表  6  距离观测值估值
    Table  6.  Estimation of Distance Observations
    算法 $ \hat l_1 $/mm $ \hat l_2 $/mm $ \hat l_3 $/mm $ \hat l_4 $/mm $ \hat l_5 $5/mm $ \hat l_6 $/mm $ \hat y_1 $/m $ \hat y_2 $/m
    LTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8
    WTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8
    下载: 导出CSV 
    | 显示表格

    本文将通用EIV函数模型展开后的二阶项纳入模型的常数项,将通用EIV模型表示为线性形式的GHM,推导出通用EIV模型的线性化整体最小二乘算法和近似精度估计公式。实验结果表明,通用EIV模型的LTLS算法与WTLS算法结果一致,验证了该算法的正确性。此外,LTLS算法估计精度公式和WTLS估计精度公式均为一阶近似精度,因此两种算法参数的估计精度相同。当通用EIV模型的待估量数量较多时,LTLS算法比WTLS计算效率更高,在处理海量数据时更具有优势。

    感谢欧洲空间局提供的Sentinel⁃1 SAR影像及30 m空间分辨率的DEM数据;以及甘肃省地矿局第三地质矿产勘查院协助野外调查验证。
    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240054
  • 图  1   研究区域概况及地震构造背景

    Figure  1.   Overview of the Study Area and Seismotectonic Background

    图  2   升轨(a)与降轨(b)干涉图时空基线分布

    注:黑线表示历史存档SAR数据的干涉图;红线表示新增SAR数据的干涉图。

    Figure  2.   Temporal and Spatial Baseline Distribution of the Ascending (a) and Descending (b) Interferograms

    图  3   深度学习活动滑坡自动化识别与序贯InSAR形变动态监测流程图

    Figure  3.   Flowchart of Automatic Landslide Identification Using Deep Learning and Dynamic Deformation MonitoringUsing Sequential InSAR

    图  4   2017年3月至2023年12月升轨(a)与降轨(b)InSAR相位梯度速率图

    Figure  4.   InSAR Phase Gradient Velocity of Ascending(a) and Descending(b) Images During March 2017 to December 2023

    图  5   基于DeepLabV3模型的InSAR相位梯度速率活动滑坡自动化识别框架

    Figure  5.   Automatic Identification Framework of Active Landslides Using InSAR Phase Gradient RateBased on the DeepLabV3 Model

    图  6   研究区域2017年3月至2023年12月升轨(a, c)与2018年3月至2023年12月降轨(b, d) Sentinel⁃1影像地表形变速率及累积形变

    注:负值(红色)表示远离SAR卫星视线方向的地表形变,正值(蓝色)表示靠近卫星视线方向的地表形变。

    Figure  6.   Deformation Rate and Cumulative Deformation of the Study Area Calculated with Ascending(March 2017 to December 2023) (a, c) and Descending(March 2018 to December 2023) (b, d) Sentinel-1 Images

    图  7   InSAR探测活动滑坡分布编目图及密度图

    Figure  7.   Inventory Map and Distribution Density Map of Active Landslides Detected by InSAR Deformation

    图  8   InSAR探测的4个典型滑坡的光学遥感影像(Google Earth)(a⁃d)及地表形变速率(a1⁃d1)

    Figure  8.   Optical Remote Sensing Images (Google Earth) (a⁃d) and Deformation Rates (a1⁃d1) of Four Exemplary Landslides Mapped by InSAR

    图  9   P1~P4点降轨Sentinel-1影像形变时间序列

    Figure  9.   Time Series of Deformation at Points P1-P4 Calculated with the Descending Sentinel-1 Images

    图  10   滑坡分布与断层(a)、高程(b)、坡度(c)、河流(d)、道路(e)及坡向(f)的关系

    Figure  10.   Relationship Between the Landslide Distribution and the Fault (a), Elevation (b),Slope Angle (c), River (d),Road (e) and Slope Aspect (f)

    图  11   林边村滑坡Google Earth影像(a)、年平均形变速率(b)、现场照片(c、d)及形变时间序列(e)

    Figure  11.   Google Earth Image (a), Annual Average Deformation Rate (b), Scene Photos (c,d) andDeformation Time Series (e) of the Linbiancun Landslide

    图  12   积石峡水库滑坡Google Earth影像(a)、年平均形变速率(b)及时间序列(c)

    Figure  12.   Google Earth Image (a), Annual Average Deformation Rate (b) andTime Series (c) of the Jishixia Reservoir Landslide

    表  1   升轨与降轨Sentinel-1影像基本参数

    Table  1   Basic Parameters of the Ascending and Descending Sentinel-1 Images

    统计项Sentinel⁃1升轨Sentinel⁃1降轨
    方位角/(°)-13.16-166.93
    入射角/(°)39.4833.75
    距离向与方位向分辨率/m2.33×13.972.33×13.97
    多视空间分辨率/m1515
    时间跨度2017⁃03⁃20—2023⁃12⁃262018⁃03⁃27—2023⁃12⁃26
    影像数量/景184157
    下载: 导出CSV
  • [1] 王兰民, 柴少峰, 薄景山, 等. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 45(8): 1543-1554.

    WANG Lanmin, CHAI Shaofeng, BO Jingshan, et al. Triggering Types, Characteristics and Disaster Mechanism of Seismic Loess Landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543-1554.

    [2] 许强, 彭大雷, 范宣梅,等.甘肃积石山Ms 6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J].武汉大学学报(信息科学版),2024, DOI: 10.13203/j.whugis20240007. doi: 10.13203/j.whugis20240007

    XU Qiang, PENG Dalei, FAN Xuanmei, et al. Preliminary Study on the Characteristics and Initiation Mechanism of Zhongchuan Town Flowslide Triggered by the Ms 6.2 Jishishan Earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20240007. doi: 10.13203/j.whugis20240007

    [3]

    FAN X M, SCARINGI G, KORUP O, et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts[J]. Reviews of Geophysics, 2019, 57(2): 421-503.

    [4] 马思远, 许冲, 陈晓利. 地震崩塌滑坡危险性应急评估模型效果对比: 以2022年6月1日Mw 5.8芦山地震为例[J]. 地震地质, 2023, 45(4): 896-913.

    MA Siyuan, XU Chong, CHEN Xiaoli. Comparison of the Effects of Earthquake-Triggered Landslide Emergency Hazard Assessment Models: A Case Study of the Lushan Earthquake with Mw 5.8 on June 1, 2022[J]. Seismology and Geology, 2023, 45(4): 896-913.

    [5] 王立朝,侯圣山,董英,等.甘肃积石山Ms 6.2地震的同震地质灾害基本特征及风险防控建议[J].中国地质灾害与防治学报, 2024,35(3): 108-118.

    WANG Lichao, HOU Shengshan, Dong Ying,et al. Basic Characteristics of Coseismic Geological Ha-zards Induced by Ms 6.2 Jishishan Earthquake and Suggestions for Their Risk Control[J]. The Chinese Journal of Geological Hazard and Control, 2024,35(3): 108-118.

    [6] 陈博,宋闯,陈毅,等.2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版), 2024, DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu,China)Earthquake[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    [7] 李为乐, 许强, 李雨森, 等. 2023年积石山Ms 6.2地震同震地质灾害初步分析[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 33-45.

    LI Weile, XU Qiang, LI Yusen, et al. Preliminary Analysis of the Coseismic Geohazards Induced by the 2023 Ms 6.2 Jishishan Earthquake[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 33-45.

    [8] 唐川. 汶川地震区暴雨滑坡泥石流活动趋势预测[J]. 山地学报, 2010, 28(3): 341-349.

    TANG Chuan. Activity Tendency Prediction of Rainfall Induced Landslides and Debris Flows in the Wenchuan Earthquake Areas[J]. Journal of Mountain Science, 2010, 28(3): 341-349.

    [9] 黄观文,景策,李东旭,等.甘肃积石山Ms 6.2地震对滑坡易发区的变形影响分析[J].武汉大学学报(信息科学版), 2024, DOI: 10.13203/j.whugis20230490. doi: 10.13203/j.whugis20230490

    HUANG Guanwen, JING Ce, LI Dongxu. et al. Deformation Analysis of the Ms 6.2 Jishishan Earthquake on the Landslide Hazard Areas[J]. Geomatics and Information Science of Wuhan University, 2024, DOI: 10.13203/j.whugis20230490. doi: 10.13203/j.whugis20230490

    [10]

    HUSSAIN E, WRIGHT T J, WALTERS R J, et al. Constant Strain Accumulation Rate Between Major Earthquakes on the North Anatolian Fault[J]. Nature Communications, 2018, 9(1): 1392.

    [11]

    ELLIOTT J R, WALTERS R J, WRIGHT T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844.

    [12]

    WANG Y A, DONG J, ZHANG L, et al. Refined InSAR Tropospheric Delay Correction for Wide⁃Area Landslide Identification and Monitoring[J]. Remote Sensing of Environment, 2022, 275: 113013.

    [13]

    LIU X J, ZHAO C Y, ZHANG Q, et al. Three-Dimensional and Long-Term Landslide Displacement Estimation by Fusing C- and L-band SAR Observations: A Case Study in Gongjue County, Tibet, China[J]. Remote Sensing of Environment, 2021, 267: 112745.

    [14]

    LIU X J, ZHAO C Y, ZHANG Q, et al. Deformation of the Baige Landslide, Tibet, China, Revealed Through the Integration of Cross-Platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR Observations[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086142.

    [15] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007.

    ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007.

    [16] 陆诗铭, 吴中海, 李智超. 2023年12月18日甘肃省积石山6.2级地震的控震构造及特征[J]. 地震科学进展, 2024, 54(1): 86-93.

    LU Shiming, WU Zhonghai, LI Zhichao. Seismic Structure Characteristics of the 18 December 2023 M 6.2 Jishishan Earthquake, Gansu Province[J]. Progress in Earthquake Sciences, 2024, 54(1): 86-93.

    [17] 李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115.

    LI Zhimin, LI Yanjing, TIAN Qinjian, et al. Study on the Relationship Between the Ancient Earthquake of Lajishan Fault and the Catastrophic Event of Lajia Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115.

    [18] 吴庆龙, 张培震, 张会平, 等. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学: 地球科学, 2009, 39(8): 1148-1159.

    WU Qinglong, ZHANG Peizhen, ZHANG Hui-ping, et al. Weir Dam Break of Jishixia Ancient Earthquake in the Upper Reaches of the Yellow River and Abnormal Ancient Flood Disaster in Lajia Site[J]. Science China Earth Sciences, 2009, 39(8): 1148-1159.

    [19]

    GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.

    [20]

    LIU X J, ZHAO C Y, YIN Y P, et al. Refined InSAR Method for Mapping and Classification of Active Landslides in a High Mountain Region: Deqin County, Southern Tibet Plateau, China[J]. Remote Sensing of Environment, 2024, 304: 114030.

    [21]

    CAO Y M, HAMLING I, MASSEY C, et al. Slow⁃Moving Landslides Triggered by the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand: A New InSAR Phase⁃gradient Based Time⁃Series Approach[J]. Geophysical Research Letters, 2023, 50(4): e2022GL102064.

    [22]

    HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016.

    [23]

    CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation[EB/OL]. (2017-07-17). https://arxiv.org/abs/1706.05587v3.

    [24]

    WANG B H, ZHAO C Y, ZHANG Q, et al. Sequential Estimation of Dynamic Deformation Parameters for SBAS⁃InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1017-1021.

  • 期刊类型引用(6)

    1. 杨根新,王友昆,谢正明. 基于广义EIV模型的矿区高程异常的无缝推估算法. 工程勘察. 2023(08): 46-51 . 百度学术
    2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 . 必应学术
    3. 翁烨,陈丽,王岩. 线性化通用EIV平差模型的正则化解法. 勘察科学技术. 2023(05): 1-5 . 百度学术
    4. 戴中东,孟良,高永攀,项伟. 加权整体最小二乘坐标匹配算法在机场道面测量中的应用. 测绘地理信息. 2022(02): 61-66 . 百度学术
    5. 翁烨,邵德盛,甘淑. 线性化通用EIV平差模型的岭估计解法. 全球定位系统. 2022(02): 82-89 . 百度学术
    6. 翁烨,邵德盛. 病态加权总体最小二乘的广义岭估计解法. 全球定位系统. 2021(06): 84-89 . 百度学术

    其他类型引用(2)

图(12)  /  表(1)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  808
  • PDF下载量:  213
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-02-16
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2025-02-04

目录

/

返回文章
返回