Coseismic Surface Displacement and Source Model of the 2024 Mw 7.0 Wushi (Xinjiang, China) Earthquake Revealed by InSAR Observations
-
摘要:
2024-01-23,新疆维吾尔自治区乌什县发生了Mw 7.0地震,本次地震是天山地震带迈丹-沙依拉姆断裂区域近20年以来发生的最大地震,该地震的发生为深入理解天山地震带断层系统的破裂行为和构造活动提供了机会。为确定2024年乌什地震的断层几何和滑动分布并评估区域危险性,利用合成孔径雷达干涉测量技术研究了乌什地震的发震断层模型。首先利用升、降轨Sentinel-1A卫星雷达影像获取2024年乌什地震的同震地表形变场,然后利用多峰值优化粒子群算法确定本次地震的均匀滑动模型,在此基础上基于非负最小二乘算法反演发震断层的精细滑动分布,最后利用库仑失稳准则评估发震区域周边的地震危险性。研究结果显示,升、降轨视线向最大抬升位移~74 cm,最大沉降位移~14 cm;本次地震的发震断层倾向北北西,倾角55°,走向~230°,滑动角~42°,发震断层呈现逆冲兼具左旋走滑分量的运动性质,符合区域活动断裂的运动模式。综合反演结果以及前人的地震地质研究,初步判断发震断层为迈丹-沙依拉姆断裂带的次级断裂。库仑应力结果表明,阔克萨勒断裂区域、大石峡断裂区域和托什干断裂(震中西北部分)区域都处于应力加载状态,这些区域未来地震风险需要被重点关注。
-
关键词:
- 2024年乌什地震 /
- 合成孔径雷达干涉测量 /
- 同震地表形变 /
- 断层滑动分布 /
- 库仑应力变化
Abstract:ObjectivesOn 23 January 2024, an Mw 7.0 earthquake struck Wushi County (Xinjiang, China). It was the largest earthquake that occurred along the Maidan-Shayilamu fault of the Tianshan seismic belt in the last two decades, which provided an opportunity to further examine the rupture behavior and tectonic activity of the fault system in the Tianshan seismic belt.
MethodsInterferometric synthetic aperture radar (InSAR) was used to retrieve coseismic surface deformation from Sentinel-1A images. The multipeak particle swarm optimization was employed to invert for fault geometry parameters and subsequently obtained the refined slip distribution based on a bounded-variable least-squares algorithm. The static Coulomb failure stress change (ΔCFS) was calculated to assess regional seismic hazards.
ResultsThe earthquake led to a maximum line of sight uplift displacement of about 74 cm and a maximum line of sight subsi⁃dence displacement of about 14 cm. The event had a NNW-dipping fault with a dip of 55°, a strike of about 230°, and a rake of about 42°, indicating that this earthquake was a thrust event with a left-lateral slip component. The slip was concentrated mainly at depths of 8-18 km. The maximum slip was 4.3 m, occurring at a depth of about 10.2 km. The total released moment was 4.25×1019 N·m, equivalent to a moment magnitude Mw 7.05.
ConclusionsOur modeling results together with previous geological researches suggest that the seismogenic fault is a secondary fault of the Maidan-Shayilamu fault zone. ΔCFS results indicate high seismic risks in Kuokesale fault region, Dashixia fault region, and the Tuoshigan fault region northwest of the epicenter, which special attention should be paid to.
-
感谢欧洲空间局提供的Sentinel⁃1A雷达影像数据;文中绝大部分图件采用GMT绘制[33]。能懿菡,硕士生,主要从事InSAR形变测量与同震建模分析研究。yihan.nai@chd.edu.cnhttp://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240037
-
表 1 2024年乌什Mw 7.0地震震源参数
Table 1 Source Parameters for the 2024 Mw 7.0 Wushi Earthquake
研究来源 震中位置 震源机制 长度/km 宽度/km 矩震级(Mw) 经度/(°E) 纬度/(°N) 深度/km 走向/(°) 倾角/(°) 滑动角/(°) USGS 78.65 41.27 13.0 235 45 42 — — 7.0 113 62 126 GCMT 78.57 41.19 14.0 236 48 47 — — 7.0 110 57 127 GFZ 78.70 41.27 15.0 251 38 72 — — 7.0 92 53 72 IPGP 78.59 41.29 22.0 234 50 51 — — 7.1 105 53 127 张喆等a 78.62 41.17 20.0 250 42 59 — — 7.0 109 55 115 本文研究 78.64 41.23 6.6±1.39 230.27±0.23 57.49±3.65 41.67±1.59 34.71±0.30 10.51±3.31 7.10b 78.61 41.21 10.2 230.27 55 — 60 30 7.05c 注: USGS(United States Geological Survey):美国地质调查局; GCMT(Global Centroid Moment Tensor):全局质心矩张量;GFZ(Helmholtz Centre for Geosciences):德国地学研究中心;IPGP(Institut de Physique du Globe de Paris):巴黎地球物理研究所;上标a表示https://www.cea-igp.ac.cn/kydt/280467.html;b表示均匀滑动模拟;c表示分布式滑动模拟。表 2 本文中使用的Sentinel-1A影像
Table 2 Sentinel-1A Images Used in This Study
飞行方向 主影像 辅影像 空间基线/m 时间基线/d 升轨(T56) 2024-01-14 2024-01-26 -19.621 7 12 降轨(T34) 2024-01-13 2024-01-25 -6.381 3 12 -
[1] 赵晓燕, 武晔, 高方平, 等. 根据余震资料求解2003年伽师Ms 6.8地震断层面的研究[J]. 地震, 2013, 33(3): 133-139. ZHAO Xiaoyan, WU Ye, GAO Fangping, et al. Determination of Fault Plane for the 2003 Jiashi Ms 6.8 Earthquake by Using Its Aftershocks[J]. Earthquake, 2013, 33(3): 133-139.
[2] 张博譞, 钱黎, 李涛, 等. 2024年1月23日新疆乌什Ms 7.1地震地质灾害和地表破裂[J]. 地震地质, 2024, 46(1): 220-234. ZHANG Boxuan, QIAN Li, LI Tao, et al. Geological Disasters and Surface Ruptures of January 23, 2024 Ms 7.1 Wushi Earthquake, Xinjiang, China[J]. Seismology and Geology, 2024, 46(1): 220-234.
[3] 吴传勇. 西南天山北东东走向断裂的晚第四纪活动特征及在天山构造变形中的作用[J]. 国际地震动态, 2017, 47(9): 46-48. WU Chuanyong. Late Quaternary Activity Characteristics of NE-Trending Fault in Southwest Tianshan Mountains and Its Role in Tianshan Tectonic Deformation[J]. Recent Developments in World Seismology, 2017, 47(9): 46-48.
[4] LI Z H, ELLIOTT J R, FENG W P, et al. The 2010 Mw 6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research, 2011, 116(B10): B10302.
[5] ELLIOTT J R, WALTERS R J, WRIGHT T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844.
[6] FENG W P, LI Z H, ELLIOTT J R, et al. The 2011 Mw 6.8 Burma Earthquake: Fault Constraints Provided by Multiple SAR Techniques[J]. Geophysical Journal International, 2013, 195(1): 650-660.
[7] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhenhong, HAN Bingquan, LIU Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
[8] 刘洋, 许才军, 温扬茂, 等. 杂多Mw 5.9地震断层滑动的InSAR反演及边界元分析[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1678-1686. LIU Yang, XU Caijun, WEN Yangmao, et al. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686.
[9] 刘振江, 韩炳权, 刘海辉, 等. InSAR数据约束下的2023年赫拉特地震序列发震断层探讨及其建筑物损毁评估[J]. 武汉大学学报(信息科学版), 2024, 49(5): 722-733. LIU Zhenjiang, HAN Bingquan, LIU Haihui, et al. Seismogenic Fault and Building Damage of the 2023 Herat Earthquake Sequence Revelated by Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 722-733.
[10] 韩炳权, 刘振江, 陈博, 等. 2022年泸定Mw 6.6地震InSAR同震形变与滑动分布[J]. 武汉大学学报(信息科学版), 2023, 48(1): 36-46. HAN Bingquan, LIU Zhenjiang, CHEN Bo, et al. Coseismic Deformation and Slip Distribution of the 2022 Luding Mw 6.6 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 36-46.
[11] 李振洪, 朱武, 余琛, 等. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834. LI Zhenhong, ZHU Wu, YU Chen, et al. Development Status and Trends of Imaging Geodesy[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1805-1834.
[12] MOLNAR P, TAPPONNIER P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189(4201): 419-426.
[13] MOLNAR P, STOCK J M. Slowing of India’s Convergence with Eurasia Since 20 Ma and Its Implications for Tibetan Mantle Dynamics[J]. Tectonics, 2009, 28(3): 1-11.
[14] 贾启超, 吴传勇, 沈军, 等. 西南天山迈丹断裂阿合奇段左旋走滑的证据及其最新活动[J]. 地震工程学报, 2015, 37(1): 222-227. JIA Qichao, WU Chuanyong, SHEN Jun, et al. Evidence of Left-Lateral Strike-Slip Along the Aheqi Segment of Maidan Fault in Southwest Tianshan Mountains, China and Its Latest Activity[J]. China Earthquake Engineering Journal, 2015, 37(1): 222-227.
[15] 杨少敏, 李杰, 王琪. GPS研究天山现今变形与断层活动[J]. 中国科学: 地球科学, 2008, 38(7): 872-880. YANG Shaomin, LI Jie, WANG Qi. Study on Present Deformation and Fault Activity in Tianshan Mountains by GPS[J]. Science China Earth Sciences, 2008, 38(7): 872-880.
[16] WEGNÜLLER U, WERNER C, STROZZI T, et al. Sentinel-1 Support in the GAMMA Software[J]. Procedia Computer Science, 2016, 100: 1305-1312.
[17] FARR T G, ROSEN P A, CARO E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004.
[18] WEISS J R, WALTERS R J, MORISHITA Y, et al. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087376.
[19] GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
[20] CHEN C W, ZEBKER H A. Network Approaches to Two-Dimensional Phase Unwrapping: Intractability and Two New Algorithms[J]. Journal of the Optical Society of America A, 2000, 17(3): 401-414.
[21] ZHANG X S, LI Z H, LIU Z J. Reduction of Atmospheric Effects on InSAR Observations Through Incorporation of GACOS and PCA into Small Baseline Subset InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5209115.
[22] SONG C, YU C, LI Z H, et al. Triggering and Recovery of Earthquake Accelerated Landslides in Central Italy Revealed by Satellite Radar Observations[J]. Nature Communications, 2022, 13(1): 7278.
[23] JONSSON S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
[24] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196. FENG Wanpeng, LI Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196.
[25] STECK L K, PHILLIPS W S, MACKEY K, et al. Seismic Tomography of Crustal P and S Across Eurasia[J]. Geophysical Journal International, 2009, 177(1): 81-92.
[26] PARSONS B, WRIGHT T, ROWE P, et al. The 1994 Sefidabeh (Eastern Iran) Earthquakes Revisited: New Evidence from Satellite Radar Interferometry and Carbonate Dating About the Growth of an Active Fold Above a Blind Thrust Fault[J]. Geophysical Journal International, 2006, 164(1): 202-217.
[27] KING G C P, STEIN R S, LIN U J. Static Stress Changes and the Triggering of Earthquakes[J]. Bulletin⁃Seismological Society of America, 1994, 84(3): 935-953.
[28] TODA S, STEIN R S, RICHARDS-DINGER K, et al. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B5): B05S16.
[29] 汪建军, 许才军, 申文斌. 2010年Mw 6.9玉树地震同震库仑应力变化研究[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1207-1211. WANG Jianjun, XU Caijun, SHEN Wenbin. The Coseismic Coulomb Stress Changes Induced by the 2010 Mw 6.9 Yushu Earthquake, China and Its Implication to Earthquake Hazards[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1207-1211.
[30] 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. SHAN Xinjian, QU Chunyan, GONG Wenyu, et al. Coseismic Deformation Field of the Jiuzhaigou Ms 7.0 Earthquake from Sentinel-1A InSAR Data and Fault Slip Inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4527-4536.
[31] 刘博研, 解孟雨, 史保平. 青海玛多Ms 7.4地震对周边活动断裂的库仑应力加载及发震概率增量的计算[J]. 地球物理学报, 2022, 65(2): 563-579. LIU Boyan, XIE Mengyu, SHI Baoping. Effect of Qinghai Madoi Ms 7.4 Earthquake on Coulomb Stress and Earthquake Probability Increment of Adjacent Faults[J]. Chinese Journal of Geophysics, 2022, 65(2): 563-579.
[32] POPE N, MOONEY W D. Coulomb Stress Models for the 2019 Ridgecrest, California Earthquake Sequence[J]. Tectonophysics, 2020, 791: 228555.
[33] WESSEL P, LUIS J F, UIEDA L, et al. The Generic Mapping Tools Version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.