2023年甘肃积石山Ms 6.2地震区域地壳形变特征分析

张文婷, 季灵运, 陈玉鑫, 刘传金, 徐晶

张文婷, 季灵运, 陈玉鑫, 刘传金, 徐晶. 2023年甘肃积石山Ms 6.2地震区域地壳形变特征分析[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012
引用本文: 张文婷, 季灵运, 陈玉鑫, 刘传金, 徐晶. 2023年甘肃积石山Ms 6.2地震区域地壳形变特征分析[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012
ZHANG Wenting, JI Lingyun, CHEN Yuxin, LIU Chuanjin, XU Jing. Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012
Citation: ZHANG Wenting, JI Lingyun, CHEN Yuxin, LIU Chuanjin, XU Jing. Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012

2023年甘肃积石山Ms 6.2地震区域地壳形变特征分析

基金项目: 

国家重点研发计划 2023YFC3007303

陕西省自然科学基础研究计划 2023-JC-QN-0324

国家自然科学基金 42104061

详细信息
    作者简介:

    张文婷,工程师,主要从事InSAR形变监测与构造形变研究。wt_zhang93@163.com

    通讯作者:

    季灵运,博士,研究员。dinsar010@163.com

Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China

  • 摘要:

    2023-12-18甘肃省临夏回族自治州积石山县发生了Ms 6.2地震。震中所在的拉脊山断裂带在调节区域构造变形过程中起着重要作用,研究该地震的地壳形变对认识区域构造活动特征至关重要。利用Sentinel-1合成孔径雷达卫星数据,基于合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)技术和小基线集技术获取了该地震升、降轨InSAR同震及震间形变场,并融合震间全球导航卫星系统资料获取了震间三维地壳形变场。综合大地测量、地质、大地电磁以及余震精定位数据,认为此次地震是青藏高原北东向扩展过程中一次区域应力调节的结果,发震主断层位于倾向SWW的拉脊山北缘断裂南段,地震发生时,该主冲断层带动着NEE倾的反冲断层共同隆起,地表沿雷达视线方向最大抬升8.9 cm。以InSAR同震形变为约束,反演得到发震断层最大同震滑移0.24 m,位于地下13.4 km,累积地震矩1.93×1018 N·m,合矩震级Mw 6.1。此外,以三维地壳形变场为约束,反演得到发震断层震间走滑速率约1.9 mm/a,倾滑速率约2.4 mm/a,闭锁深度约为16.8 km。受此次地震影响,拉脊山断裂东南段、倒淌河-临夏断裂中南段以及西秦岭北缘断裂西端等未来的地震危险性值得关注。

    Abstract:
    Objectives 

    An earthquake with Ms 6.2 occurred in Jishishan County, Gansu Province on December 18, 2023. The epicenter is located at the Lajishan fault zone, which plays an important role in adjusting regional tectonic deformation. Therefore, it is important to research the crustal deformation of this earthquake.

    Methods 

    We collect coseismic and preseismic Sentinel-1 single look complex images covering the study area, and use differential interferometric synthetic aperture radar (InSAR) and small baseline subset technology to obtain the coseismic and interseismic deformation, respectively. Furthermore, both interseismic InSAR and global navigation satellite system observations are integrated to obtain the high-accuracy and high-resolution three-dimensional deformation field. Subsequently, we invert the slip distribution of the seismogenic fault using the steepest descent method program with the constraint of coseismic deformation. The fault model is constructed based on 3D electrical structure, aftershocks, and InSAR deformation field. In addition, we invert the dextral strike slip rate, dip slip, and locking depth of the seismogenic fault with the constraint of three-dimensional deformation.

    Results 

    Both ascending and descending coseismic InSAR deformation exhibit symmetrical elliptical uplift with a maximum uplift of 8.9 cm along the radar line of sight direction, indicating a thrust earthquake, and there is no obvious surface rupture. The seismogenic fault is mainly characterized by reverse movement and did not rupture the surface, and the peak slip is 0.24 m at the depth of 13.4 km. The geode⁃tic moment is about 1.93×1018 N·m, corresponding to Mw 6.1 event. The dextral strike slip rate and dip slip rate of the seismogenic fault are about 1.9 mm/a and 2.4 mm/a, respectively. The locking depth of the seismogenic fault is about 16.8 km, close the the depth of this earthquake.

    Conclusions 

    The seismogenic fault may be a SWW-dipping hidden fault near the southern segment of the northern Lajishan fault, which thrusts towards the basin direction and parallel to the Lajishan fault. The main seismogenic fault may be southern segment of the SWW-dipping northern Lajishan fault. This main thrust fault and the NEE dipping back-thrust fault jointly uplift when the earthquake occurs. The static Coulomb stress calculation result indicates that the future seismic risk of the southern section of the northern Lajishan fault, the southern end of the southern Lajishan fault, the central and southern sections of the Daotanghe-Linxia fault, and the western end of the northern west Qinling fault cannot be ignored. This earthquake is the result of a regional stress regulation under the the northeast expansion of the Tibet Plateau.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240012
  • 图  1   2023年积石山Ms 6.2地震构造背景图

    注:LJSNF:拉脊山北缘断裂;LJSSF:拉脊山南缘断裂;DTHF:倒淌河⁃临夏断裂;WQLNF:西秦岭断裂北缘断裂;RYSF:日月山断裂;ZLHF:庄浪河断裂;GDF:贵德断裂;XNMHB:西宁民和盆地;LXB:临夏盆地;XHHLB:循化⁃化隆盆地。

    Figure  1.   Tectonic Setting of the 2023 Ms 6.2 Jishishan Earthquake

    图  2   积石山Ms 6.2地震地壳形变特征分析技术路线图

    Figure  2.   Flowchart for Crustal Deformation Analysis of the Ms 6.2 Jishishan Earthquake

    图  3   InSAR同震形变及余震分布图

    Figure  3.   InSAR Interferograms and Aftershocks Distribution

    图  4   震前InSAR震间形变场及InSAR⁃GNSS融合的形变场

    Figure  4.   Preseismic InSAR Deformation and InSAR⁃GNSS Integrated Deformation Fields

    图  5   发震断层几何模型

    注:蓝色空心圆表示余震的空间位置,震级大小与圆的大小成正比,红色五角星表示主震,黑色粗实线表示地表迹线,走向由余震及InSAR形变场给出,长度为36 km。

    Figure  5.   Seismogenic Fault Geometry Model

    图  6   同震观测值、模拟值及残差图

    Figure  6.   Coseismic Observations, Simulations and Residual Results

    图  7   分布式同震滑动模型拟合结果

    Figure  7.   Fitting Results of Distributed Coseismic Slip Model

    图  8   震间形变剖线拟合结果

    Figure  8.   Interseismic Velocity Two-Dimensional Profile Fitting Results

    图  9   拉脊山邻近地区构造活动模式图(据文献[4041]修改)

    注:1.区域应力方向;2.走滑断裂;3.逆断裂;4.块体旋转方向;5.块体挤出方向;6.积石山Ms 6.2地震震中。

    Figure  9.   The Model of Tectonic Activity in the Lajishan Mountain and Is Adjacent Area (Modified by Reference[4041])

    图  10   积石山Ms 6.2地震引起周边断层的静态库仑应力变化

    注:LJSNF:拉脊山北缘断裂;LJSSF:拉脊山南缘断裂;DTHF:倒淌河⁃临夏断裂;WQLNF:西秦岭断裂北缘断裂;MMSF:毛毛山断裂;RYSF:日月山断裂;ZLHF:庄浪河断裂;HYF:海原断裂;LPSF:六盘山断裂;EKLF:东昆仑断裂;LTDCF:临潭⁃宕昌;GDF:贵德断裂。

    Figure  10.   Static Coulomb Stress Changes on Surrounding Faults Caused by the Ms 6.2 Jishishan Earthquake

    表  1   不同机构及研究提供的震源机制解

    Table  1   Focal Mechnism Solutions of the 2023 Jishishan Earthquake from Different Institutions and Studies

    研究来源震中位置深度/km节面1节面2震级(Mw)
    经度/(°E)纬度/(°N)走向/(°)倾角/(°)滑动角/(°)走向/(°)倾角/(°)滑动角/(°)
    IGP⁃CEA102.7935.68101554411130750715.96
    GCMT102.8135.8318.9164461230352626.1
    USGS102.82735.74310156288333362885.9
    杨九元等[2]102.7335.716.631154806.1
    刘振江等[3]102.7535.769.3319431046.1
    李雨森等[4]102.7735.782.731057906.0
    方楠等[5]102.7635.777.7325321126.0
    Tang等[6]11146296.1
    注:IGP⁃CEA(Institute of Geophysics, China Earthquake Administration):中国地震局地球物理研究所;GCMT (Global Centroid⁃Moment⁃Tensor):全球矩张量;USGS(United States Geological Survey):美国地质调查局。
    下载: 导出CSV

    表  2   D-InSAR干涉对参数信息

    Table  2   Parameters of D-InSAR Interferograms

    编号模式轨道号入射角/(°)飞行方位角/(°)获取影像时间垂直基线/m
    震前震后
    1升轨12839.15-13.112023-10-272023-12-2663.98
    2降轨13533.75-166.932023-12-142023-12-26-117.29
    下载: 导出CSV
  • [1] 陈博,宋闯,陈毅,等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版),2024, DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake [J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    [2] 杨九元,温扬茂,许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报(信息科学版),2024, DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501

    YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations [J]. Geomatics and Information Science of Wuhan University, 2024,DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501

    [3] 刘振江,韩炳权,能懿菡,等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版),2024, DOI:10.13203/J.whugis20240008. doi: 10.13203/J.whugis20240008

    LIU Zhenjiang, HAN Bingquan, Nai Yihan, et al. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations [J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20240008. doi: 10.13203/J.whugis20240008

    [4] 李雨森, 李为乐, 许强, 等. 2023年积石山Ms 6.2地震InSAR同震形变探测与断层滑动分布反演[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 22-32.

    LI Yusen, LI Weile, XU Qiang, et al. Coseismic Deformation and Slip Distribution of the 2023 Ms 6.2 Jishishan Earthquake Revealed by InSAR Observations[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2024, 51(1): 22-32.

    [5] 方楠,孙凯,黄传超,等.联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis20240036. doi: 10.13203/J.whugis20240036

    FANG Nan, SUN Kai, HUANG Chuanchao, et al. Joint Inversion of Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake [J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20240036. doi: 10.13203/J.whugis20240036

    [6]

    TANG X W, GUO R M, ZHANG Y J, et al. Rapid Rupture Characterization for the 2023 Ms 6.2 Jishi-shan Earthquake[J]. Earthquake Research Advances, 2024, 4(2): 100287.

    [7] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102.

    YUAN Daoyang, ZHANG Peizhen, LEI Zhong-sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102.

    [8] 张波. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州: 中国地震局兰州地震研究所, 2012.

    ZHANG Bo. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Laji Shan Fault[D]. Lanzhou:Lanzhou Institute of Seismology, China Earthquake Administration, 2012.

    [9]

    ZHAO L Q, ZHAN Y, WANG Q L, et al. 3D Electrical Structure and Crustal Deformation of the Lajishan Tectonic Belt, Northeastern Margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2022, 224: 104953.

    [10]

    YUAN D Y, GE W P, CHEN Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Large⁃Scale Continental Geodynamics: A Review of Recent Studies[J]. Tectonics, 2013, 32(5): 1358-1370.

    [11] 谢虹, 雷中生, 袁道阳, 等. 1944年青海乐都瞿昙寺地震考证[J]. 内陆地震, 2014, 28(4): 305-311.

    XIE Hong, LEI Zhongsheng, YUAN Daoyang, et al. Reasearch on Historical Data of Qutan Temple Earthquake in 1944 in Qinghai Province[J]. Inland Earthquake, 2014, 28(4): 305-311.

    [12]

    HAO M, WANG Q L, SHEN Z K, et al. Present Day Crustal Vertical Movement Inferred from Precise Leveling Data in Eastern Margin of Tibetan Plateau[J]. Tectonophysics, 2014, 632: 281-292.

    [13] 周琳, 王庆良, 李长军, 等. 基于GPS和水准资料的拉脊山断裂带西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059.

    ZHOU Lin, WANG Qingliang, LI Zhangjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059.

    [14]

    ZHUANG W Q, CUI D X, HAO M, et al. Geodetic Constraints on Contemporary Three-Dimensional Crustal Deformation in the Laji Shan⁃Jishi Shan Tectonic Belt[J]. Geodesy and Geodynamics, 2023, 14(6): 589-596.

    [15]

    ZHANG W T, JI L Y, ZHU L Y, et al. Current Slip and Strain Rate Distribution Along the Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations[J]. Frontiers in Earth Science, 2022, 10: 821761.

    [16]

    ZHAO Q, JIANG F Y, ZHU L Y, et al. Synthetic Aperture Radar Interferometry–Based Coseismic Deformation and Slip Distribution of the 2022 Menyuan Ms 6.9 Earthquake in Qinghai, China[J]. Geodesy and Geodynamics, 2023, 14(6): 541-550.

    [17] 季灵运, 刘传金, 徐晶, 等. 九寨沟Ms 7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 2017, 60(10): 4069-4082.

    JI Lingyun, LIU Chuanjin, XU Jing, et al. InSAR Observation and Inversion of the Seismogenic Fault for the 2017 Jiuzhaigou Ms 7.0 Earthquake in China[J]. Chinese Journal of Geophysics, 2017, 60(10): 4069-4082.

    [18]

    GUO R M, LI L N, ZHANG W T, et al. Kinematic Slip Evolution During the 2022 Ms 6.8 Luding, China, Earthquake: Compatible with the Preseismic Locked Patch[J]. Geophysical Research Letters, 2023, 50(5): 1-10.

    [19]

    WERNER C, WEGMLLER U, STROZZI T, et al. Gamma SAR and Interferometric Processing Software[C]// ERS-Envisat Symposium, Gothenburg, Sweden, 2000.

    [20]

    YAGÜE-MARTÍNEZ N, PRATS-IRAOLA P, RODRÍGUEZ GONZÁLEZ F, et al. Interferometric Processing of Sentinel-1 TOPS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2220-2234.

    [21]

    The European Space Agency. Copernicus Global Digital Elevation Model(COP-DEM) [EB/OL]. [2023-12-20] https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model.

    [22]

    GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.

    [23]

    COSTANTINI M. A Novel Phase Unwrapping Method Based on Network Programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 813-821.

    [24]

    FIALKO Y, SANDWELL D, SIMONS M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435: 295-299.

    [25]

    YU C, LI Z H, PENNA N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research (Solid Earth), 2018, 123(10): 9202-9222.

    [26]

    LIANG S M, GAN W J, SHEN C Z, et al. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5722-5732.

    [27]

    WANG M, SHEN Z K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research (Solid Earth), 2020, 125(2): e2019JB018774.

    [28] 庄文泉, 李君, 郝明, 等. 利用加密GNSS数据和震源机制解分析川滇块体南部现今地壳活动特性[J]. 大地测量与地球动力学, 2021, 41(7): 732-738.

    ZHUANG Wenquan, LI Jun, HAO Ming, et al. Study on the Characteristics of Current Crustal Activity in the Southern Sichuan-Yunnan Block Using Dense GNSS Data and Focal Mechanism Solution[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 732-738.

    [29]

    LIU C J, JI L Y, ZHU L Y, et al. Present-Day Three-Dimensional Deformation Across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations[J]. Remote Sensing, 2023, 15(11): 2890.

    [30]

    WANG H, WRIGHT T J. Satellite Geodetic Ima-ging Reveals Internal Deformation of Western Tibet[J]. Geophysical Research Letters, 2012, 39(7): 1-5.

    [31]

    WANG R J, DIAO F, HOECHNER A. SDM —A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry[C]// General Assembly European Geosciences Union, Vienna, Austria,2013.

    [32] 刘琦, 闻学泽, 邵志刚. 基于GPS、水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布[J]. 地球物理学报, 2016, 59(6): 2113-2125.

    LIU Qi, WEN Xueze, SHAO Zhigang. Joint Inversion for Coseismic Slip of the 2013 Ms 7.0 Lushan Earthquake from GPS, Leveling and Strong Motion Observations[J]. Chinese Journal of Geophysics, 2016, 59(6): 2113-2125.

    [33]

    COOLEY M A, PRICE R A, DIXON J M, et al. Along-Strike Variations and Internal Details of Chevron-Style, Flexural-Slip Thrust-Propagation Folds Within the Southern Livingstone Range Anticlinorium, a Paleohydrocarbon Reservoir in Southern Alberta Foothills, Canada[J]. AAPG Bulletin, 2011, 95(11): 1821-1849.

    [34]

    ZHU L Y, JI L Y, LIU C J, et al. The 8 January 2022, Menyuan Earthquake in Qinghai, China: A Representative Event in the Qilian-Haiyuan Fault Zone Observed Using Sentinel-1 SAR Images[J]. Remote Sensing, 2022, 14(23): 6078.

    [35]

    JI L Y, ZHANG W T, LIU C J, et al. Characteri-zing Interseismic Deformation of the Xianshuihe Fault, Eastern Tibetan Plateau, Using Sentinel-1 SAR Images[J]. Advances in Space Research, 2020, 66(2): 378-394.

    [36]

    ZHU L Y, JI L Y, LIU C J. Interseismic Slip Rate and Locking Along the Maqin–Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, Based on Sentinel-1 Images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703.

    [37] 邹镇宇, 江在森, 武艳强, 等. 针对一般倾角的走滑/倾滑位移理论公式的改进[J]. 大地测量与地球动力学, 2015, 35(3): 460-463.

    ZOU Zhenyu, JIANG Zaisen, WU Yanqiang, et al. Improvements for the Strike/Dip-Slip Displacement Theory Formula of General Dip Fault[J]. Journal of Geodesy and Geodynamics, 2015, 35(3): 460-463.

    [38]

    SAVAGE J C, BURFORD R O. Geodetic Determination of Relative Plate Motion in Central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845.

    [39]

    FREUND L B, BARNETT D M. A Two-Dimensional Analysis of Surface Deformation Due to Dip-Slip Faulting [J]. Bulletin of the Seismological Society of America, 1976, 66(3): 667-675.

    [40] 赵静, 牛安福, 李强, 等. 陇西块体周边断层闭锁程度与滑动亏损特征研究[J]. 地震研究, 2016, 39(3): 351-358.

    ZHAO Jing, NIU Anfu, LI Qiang, et al. Study on Dynamic Characteristics of Fault Locking and Fault Slip Deficit in the Faults Around the Longxi Block[J]. Journal of Seismological Research, 2016, 39(3): 351-358.

    [41] 刘小凤, 梅秀苹, 冯建刚, 等. 青藏高原北部地区地震基本活动状态定量评价[J]. 西北地震学报, 2011, 33(2): 130-136.

    LIU Xiaofeng, MEI Xiuping, FENG Jiangang, et al. Quantitative Estimating Basic State of Seismicity in Northern Region of Qinghai-Xizang Plateau[J]. Northwestern Seismological Journal, 2011, 33(2): 130-136.

    [42]

    WANG R J, LORENZO-MARTÍN F, ROTH F. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory[J]. Computers Geosciences, 2006, 32(4): 527-541.

    [43] 石富强, 熊熊, 王朋涛, 等. 2016年以来门源2次6级地震的应力触发及其对祁连—海原断裂带地震危险性的指示[J]. 地球物理学报, 2023, 66(8): 3230-3241.

    SHI Fuqiang, XIONG Xiong, WANG Pengtao, et al. Stress Interaction Between the Two M>6 Earthquake Since 2016 and Its Implication on the Seismic Hazard Along the Qilian-Haiyuan Fault Zone[J]. Chinese Journal of Geophysics, 2023, 66(8): 3230-3241.

    [44] 汤大委, 葛伟鹏, 袁道阳, 等. 青藏高原北部历史强震对2022年门源Ms 6.9地震及后续地震库仑应力触发作用[J]. 地球物理学报, 2023, 66(7): 2772-2795.

    TANG Dawei, GE Weipeng, YUAN Daoyang, et al. Triggering Effect of Historical Earthquakes in the Northern Tibetan Plateau on the Coulomb Stress of the 2022 Menyuan Ms 6.9 Earthquake and Subsequent Earthquakes[J]. Chinese Journal of Geophysics, 2023, 66(7): 2772-2795.

    [45] 徐晶, 邵志刚, 马宏生, 等. 汶川8.0级地震和芦山7.0级地震对周边断层的影响[J]. 地震, 2014, 34(4): 40-49.

    XU Jing, SHAO Zhigang, MA Hongsheng, et al. Impact of the 2008 Wenchuan 8.0 and the 2013 Lushan 7.0 Earthquakes Along the Longmenshan Fault Zone on Surrounding Faults[J]. Earthquake, 2014, 34(4): 40-49.

    [46] 岳冲, 屈春燕, 牛安福, 等. 玛多Ms 7.4地震对周边断层的应力影响分析[J]. 地震地质, 2021, 43(5): 1041-1059.

    YUE Chong, QU Chunyan, NIU Anfu, et al. Analysis of Stress Influence of Qinghai Maduo Ms 7.4 Earthquake on Surrounding Faults[J]. Seismology and Geology, 2021, 43(5): 1041-1059.

    [47] 程佳, 姚生海, 刘杰, 等. 2017年九寨沟地震所受历史地震黏弹性库仑应力作用及其后续对周边断层地震危险性的影响[J]. 地球物理学报, 2018, 61(5): 2133-2151.

    CHENG Jia, YAO Shenghai, LIU Jie, et al. Visoelastic Coulomb Stress of Historical Earthquakes on the 2017 Jiuzhaigou Earthquake and the Subsequent Influence on the Seismic Hazards of Adjacent Faults[J]. Chinese Journal of Geophysics, 2018, 61(5): 2133-2151.

    [48]

    HARRIS R A, SIMPSON R W. Suppression of Large Earthquakes by Stress Shadows: A Comparison of Coulomb and Rate-and-State Failure[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24439-24451.

图(10)  /  表(2)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  37
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2025-02-04

目录

    /

    返回文章
    返回