Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations
-
摘要:
2023-12-18,甘肃省临夏回族自治州积石山县发生了Mw 6.0地震,本次地震是青藏高原东北缘拉脊山断裂带上有现代地震记录以来发生的最大地震。快速获取2023年积石山地震的发震断层几何和精细滑动分布对于评估拉脊山断裂带周边区域未来地震危险性具有重要意义。利用Sentinel-1A卫星雷达观测获取了2023年积石山地震的升、降轨同震地表形变场,并以此为约束反演了该事件的发震断层几何和精细滑动分布,结合库仑失稳准则分析了区域地震危险性。合成孔径雷达干涉形变结果表明本次地震的升、降轨同震形变场均以抬升形变为主,升轨最大视线向位移~6.5 cm,降轨最大视线向位移~7.2 cm;同震断层建模测试表明,使用东倾断层几何和西倾断层几何均能较好地解释该次地震引起的地表形变。根据余震以及同震滑坡分布分析结果,更倾向于认为本次地震发生在一条NNW走向的东倾逆冲盲断层;静态库仑应力变化计算结果表明,2023年积石山地震的发生增加了拉脊山南缘断裂、拉脊山北缘断裂的NWW走向分段及其NNW走向的震中以南分段、西秦岭北缘断裂以及倒淌河-临夏断裂的震中以东分段的未来地震风险。
-
关键词:
- 2023年积石山地震 /
- 合成孔径雷达干涉测量 /
- 同震地表位移 /
- 滑动分布 /
- 库仑应力变化
Abstract:ObjectivesOn 18 December 2023, an Mw 6.0 earthquake struck Jishishan county (Gansu, China). It is the largest earthquake ever recorded in the Lajishan fault zone at the northeastern margin of the Tibetan Plateau since modern seismicity has been recorded and is of great importance to determine seismogenic fault geometry and refined slip distribution for assessing future seismic hazards in the Lajishan fault zone region.
MethodsWe used Sentinel-1A synthetic aperture radar (SAR) images to acquire coseismic surface deformation and used them as a constraint to invert the fault geometry and refined slip distribution, and ana-lysed the regional seismic risk based on the static Coulomb failure stress change.
ResultsThe interferometric SAR results show that the coseismic displacements were dominated by uplift deformation for both ascending and descending tracks, with the maximum line-of-sight (LOS) uplift deformation about 6.5 cm for ascending track, and about 7.2 cm for descending track. Source mode-ling results show that the coseismic surface displacements of this event can be explained well using either east- or west-dipping fault geometry.
ConclusionsBased on aftershock and coseismic landslide distributions, we prefer to the east-dipping fault model as the seismogenic fault of the event, i.e. this earthquake occurred on a NNW-trending, east-dipping, blind thrut fault. Stress loading in the region indicates that future attention should be paid in: (1) the entire section of the South Laji Mountain fault; (2) the NWW-trending segments of the North Laji Mountain fault and its NNW-trending segments south of the epicentre; (3) the segments east of the epicentre of the northern margin of western Qinling fault and Daotanghe-Linxia fault.
-
感谢欧洲空间局提供的Sentinel⁃1A雷达影像数据;余震定位数据来源于中国地震局地球物理研究所房立华研究员课题组;本文中绝大部分图件采用GMT绘制[52]。刘振江,博士生,主要从事InSAR形变测量与地震周期分析研究。zhenjiang.liu@chd.edu.cnhttp://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240008
-
表 1 2023年Mw 6.0积石山地震震源参数
Table 1 Source Parameters for the 2023 Mw 6.0 Jishishan Earthquake
研究来源 震中位置 震源机制 长度/km 宽度/km 矩震级(Mw) 经度/(°) 纬度/(°) 深度/km 走向/(°) 倾角/(°) 滑动角/(°) USGS 102.83 35.74 10.0 333 62 88 — — 5.9 156 28 93 GCMT 102.81 35.83 18.9 303 52 62 — — 6.1 164 46 122 GFZ 102.81 35.74 18.0 331 52 98 — — 6.0 137 38 79 张喆等e 102.79 35.68 10.0 307 50 71 — — 6.0 155 44 111 王卫民等f — — 10.4 298 61 62 45 33 6.1 165 39 117 本文研究 102.75 35.76 7.3 319 43 104 14 8 6.1a 102.79 35.76 9.3 319 42 — 25 15 6.0b 102.81 35.77 6.7 143 38 104 15 10 6.1c 102.80 35.73 9.2 143 37 — 22 15 6.0d 注: USGS(United States Geological Survey):美国地质调查局; GCMT(Global Centroid Moment Tensor):全球矩心矩张量; GFZ(Helmholtz Centre for Geosciences):德国地学研究中心;上标a表示东倾模型的均匀滑动模拟; b表示东倾模型的分布式滑动模拟; c表示西倾模型的均匀滑动模拟; d表示西倾模型的分布式滑动模拟; e参见https://www.cea-igp.ac.cn/cxdt/280419.html; f参见http://www.itpcas.cas.cn/new_kycg/new_kyjz/202312/t20231219_6945583.html。表 2 本文中使用的Sentinel⁃1A影像
Table 2 Sentinel⁃1A Images Used in This Study
飞行方向 主影像 辅影像 空间基线/m 时间基线/d 升轨(T128) 2023-10-27 2023-12-26 63.94 60 降轨(T135) 2023-12-14 2023-12-26 -117.14 12 -
[1] 刘成利, 郑勇, 谢祖军, 等. 2013年7月22日甘肃定西地震的震源破裂过程[J]. 地球物理学进展, 2015, 30(1): 99-105. LIU Chengli, ZHENG Yong, XIE Zujun, et al. Rupture Process of the Gansu Dingxi Earthquake on July 22, 2013[J]. Progress in Geophysics, 2015, 30(1): 99-105.
[2] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102. YUAN Daoyang, ZHANG Peizhen, LEI Zhong⁃sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102.
[3] 张波. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州: 中国地震局兰州地震研究所, 2012. ZHANG Bo. The Study of New Activities on Wes⁃tern Segment of Northern Margin of Western Qinling Fault and Lajishan Fault[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration, 2012.
[4] ZHUANG W Q, CUI D X, HAO M, et al. Geodetic Constraints on Contemporary Three-Dimensional Crustal Deformation in the Laji Shan–Jishi Shan Tectonic Belt[J]. Geodesy and Geodynamics, 2023, 14(6): 589-596.
[5] MASSONNET D, ROSSI M, CARMONA C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364: 138-142.
[6] LI Z H, ELLIOTT J R, FENG W P, et al. The 2010 Mw 6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research, 2011, 116(B10): B10302.
[7] ELLIOTT J R, WALTERS R J, WRIGHT T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844.
[8] FENG W P, LI Z H, ELLIOTT J R, et al. The 2011 Mw 6.8 Burma Earthquake: Fault Constraints Provided by Multiple SAR Techniques[J]. Geophysical Journal International, 2013, 195(1): 650-660.
[9] HAN B Q, YANG C S, LI Z H, et al. Coseismic and Postseismic Deformation of the 2016 Mw 6.0 Petermann Ranges Earthquake from Satellite Radar Observations[J]. Advances in Space Research, 2022, 69(1): 376-385.
[10] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhenhong, HAN Bingquan, LIU Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
[11] 刘洋, 许才军, 温扬茂, 等. 杂多Mw 5.9地震断层滑动的InSAR反演及边界元分析 [J]. 武汉大学学报(信息科学版), 2020, 45(11): 1678-86. LIU Yang, XU Caijun, WEN Yangmao, et al.InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686.
[12] 刘振江, 韩炳权, 刘海辉, 等. InSAR数据约束下的2023年赫拉特地震序列发震断层探讨及其建筑物损毁评估 [J]. 武汉大学学报(信息科学版), 2024, 49(5): 722-733. LIU Zhenjiang, HAN Bingquan, LIU Haihui, et al. Discussion of the Seismogenic Fault of the 2023 Herat Earthquake Sequence and Its Building Damage Assessment Constrained by Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 722-733.
[13] 杨九元, 温扬茂, 许才军. 2021年5月21日云南漾濞Ms 6.4地震: 一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报, 2021, 64(9): 3101-3110. YANG Jiuyuan, WEN Yangmao, XU Caijun. The 21 May 2021 Ms 6.4 Yangbi (Yunnan) Earthquake: A Shallow Strike-Slip Event Rupturing in a Blind Fault[J]. Chinese Journal of Geophysics, 2021, 64(9): 3101-3110.
[14] 冯楚豪, 严月天, 冯万鹏, 等. 利用InSAR观测揭示2020年新疆于田Mw 6.3地震发震构造及对藏北裂谷生长的启示[J]. 地球物理学报, 2022, 65(8): 2844-2856. FENG Chuhao, YAN Yuetian, FENG Wanpeng, et al. Seismogenic Fault of the 2020 Mw 6.3 Yutian, Xinjiang Earthquake Revealed from InSAR Observations and Its Implications for the Growth of the Rift in the North Tibet[J]. Chinese Journal of Geophysics, 2022, 65(8): 2844-2856.
[15] 许光煜, 徐锡伟, 易亚宁, 等. 2022年青海门源Mw 6.6地震发震构造: 来自InSAR和高分影像约束[J]. 地球物理学报, 2022, 65(12): 4704-4724. XU Guangyu, XU Xiwei, YI Yaning, et al. Seismogenic Structure of the 2022 Menyuan Mw 6.6 Earthquake, Qinghai Province, Constrained by InSAR and Gaofen-7 Observation[J]. Chinese Journal of Geophysics, 2022, 65(12): 4704-4724.
[16] 赵磊, 许文斌, 方楠, 等. 2021年青海玛多Mw 7.3地震同震和早期震后断层滑动模型及发震构造摩擦属性[J]. 地球物理学报, 2023, 66(3): 1086-1097. ZHAO Lei, XU Wenbin, FANG Nan, et al. Coseismic and Early Postseismic Fault Slip Model and the Seismogenic Fault Friction Properties of the 2021 Qinghai Madoi Mw 7.3 Earthquake[J]. Chinese Journal of Geophysics, 2023, 66(3): 1086-1097.
[17] Tapponnier P, Xu Z Q, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
[18] MOLNAR P, TAPPONNIER P. Cenozoic Tecto-nics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189(4201): 419-426.
[19] MOLNAR P, STOCK J M. Slowing of India’s Convergence with Eurasia Since 20 Ma and Its Implications for Tibetan Mantle Dynamics[J]. Tectonics, 2009, 28(3): 1-11.
[20] 王锦涵, 石许华, 陈汉林, 等. “V” 型共轭走滑断裂: 特征、形成机制及其对青藏高原东南缘晚新生代变形的启示[J]. 地球科学, 2023, 48(4): 1421-1440. WANG Jinhan, SHI Xuhua, CHEN Hanlin, et al. V-Shaped Conjugate Strike-Slip Faults: Characte-ristics, Formation Mechanisms and Implications for the Late Cenozoic Deformation in the Southeastern Tibetan Plateau[J]. Earth Science, 2023, 48(4): 1421-1440.
[21] 彭建兵, 张永双, 黄达, 等. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应[J]. 地球科学, 2023, 48(8): 3099-3114. PENG Jianbing, ZHANG Yongshuang, HUANG Da, et al. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau[J]. Earth Science, 2023, 48(8): 3099-3114.
[22] WANG M, SHEN Z K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research (Solid Earth), 2020, 125(2): e2019JB018774.
[23] 周琳, 王庆良, 李长军, 等. 基于GPS和水准资料的拉脊山断裂带西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059. ZHOU Lin, WANG Qingliang, LI Zhangjun;, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059.
[24] 李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014, 37(S1): 109-115. LI Zhimin, LI Yanjing, TIAN Qinjian, et al. Study on the Relationship Between the Ancient Earthquake of Lajishan Fault and the Catastrophic Event of Lajia Site[J]. Journal of Seismological Research, 2014, 37(S1): 109-115.
[25] 袁道阳. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所, 2003. YUAN Daoyang. Tectonic Deformation Features and Space-Time Evolution in Northeastern Margin of the Qinghai-Tibetan Plateau Since the Late Cenozoic Time[D]. Beijing: Institute of Geology,China Earthquake Administration, 2003.
[26] 张波, 何文贵, 方良好, 等. 1936年甘肃康乐6(34)级地震地表破裂带调查[J]. 地震研究, 2015, 38(2): 262-271. ZHANG Bo, HE Wengui, FANG Lianghao, et al. Surveys on Surface Rupture Phenomena of Gansu Kangle M 6(34) Earthquake in 1936[J]. Journal of Seismological Research, 2015, 38(2): 262-271.
[27] REN Z K, ZHANG Z Q, CHEN T, et al. Cluste-ring of Offsets on the Haiyuan Fault and Their Relationship to Paleoearthquakes[J]. Geological Society of America Bulletin, 2016, 128 (1): 3–18.
[28] 吴庆龙, 张培震, 张会平, 等. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学: 地球科学, 2009, 39(8): 1148-1159. WU Qinglong, ZHANG Peizhen, ZHANG Hui-ping, et al. Weir Dam Break of Jishixia Ancient Earthquake in the Upper Reaches of the Yellow River and Abnormal Ancient Flood Disaster in Lajia Site[J]. Science in China Earth Sciences, 2009, 39(8): 1148-1159.
[29] WEGNÜLLER U, WERNER C, STROZZI T, et al. Sentinel-1 Support in the GAMMA Software[J]. Procedia Computer Science, 2016, 100: 1305-1312.
[30] FARR T G, ROSEN P A, CARO E, et al. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics, 2007, 45(2): 1-33.
[31] WEISS J R, WALTERS R J, MORISHITA Y, et al. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data[J]. Geophysical Research Letters, 2020, 47(17): 1-12.
[32] GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
[33] CHEN C W, ZEBKER H A. Network Approaches to Two-Dimensional Phase Unwrapping: Intractabi-lity and Two New Algorithms[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2000, 17(3): 401-414.
[34] JONSSON S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
[35] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196. FENG Wanpeng, LI Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196.
[36] FUKAHATA Y, WRIGHT T J. A Non-Linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault with an Unknown Dip Angle[J]. Geophysical Journal International, 2008, 173(2): 353-364.
[37] 韩炳权, 刘振江, 陈博, 等. 2022年泸定Mw 6.6地震InSAR同震形变与滑动分布[J]. 武汉大学学报(信息科学版), 2023, 48(1): 36-46. HAN Bingquan, LIU Zhenjiang, CHEN Bo, et al. Coseismic Deformation and Slip Distribution of the 2022 Luding Mw 6.6 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 36-46.
[38] LI Z H, FENG W P, XU Z H, et al. The 1998 Mw 5.7 Zhangbei-Shangyi (China) Earthquake Revisited: A Buried Thrust Fault Revealed with Interferometric Synthetic Aperture Radar[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04026.
[39] BLOCH W, METZGER S, SCHURR B, et al. The 2015—2017 Pamir Earthquake Sequence: Foreshocks, Main Shocks and Aftershocks, Seismotectonics, Fault Interaction and Fluid Processes[J]. Geophysical Journal International, 2022, 233(1): 641-662.
[40] FAN X M, SCARINGI G, KORUP O, et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts[J]. Reviews of Geophysics, 2019, 57(2): 421-503.
[41] MEUNIER P, UCHIDA T, HOVIUS N. Landslide Patterns Reveal the Sources of Large Earthquakes[J]. Earth and Planetary Science Letters, 2013, 363: 27-33.
[42] GORUM T, CARRANZA E J M. Control of Style-of-Faulting on Spatial Pattern of Earthquake-Triggered Landslides[J]. International Journal of Environmental Science and Technology, 2015, 12(10): 3189-3212.
[43] 许冲, 徐锡伟, 沈玲玲, 等. 2014年鲁甸Ms 6.5地震触发滑坡编录及其对一些地震参数的指示[J]. 地震地质, 2014, 36(4): 1186-1203. XU Chong, XU Xiwei, SHEN Lingling, et al. Inventory of Landslides Triggered by the 2014 Ms 6.5 Ludian Earthquake and Its Implications on Several Earthquake Parameters[J]. Seismology and Geology, 2014, 36(4): 1186-1203.
[44] SATO H P, HASEGAWA H, FUJIWARA S, et al. Interpretation of Landslide Distribution Triggered by the 2005 Northern Pakistan Earthquake Using SPOT 5 Imagery[J]. Landslides, 2007, 4(2): 113-122.
[45] 陈博, 宋闯, 陈毅, 等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究 [J]. 武汉大学学报 ( 信息科学版), 2024. DOI: 10.13203/j.whugis20230497. doi: 10.13203/j.whugis 20230497 CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake. Geomatics and Information Science of Wuhan University, 2024,DOI: 10.13203/j.whugis 20230497. doi: 10.13203/j.whugis 20230497
[46] KING G C P, STEIN R S, LIN U J. Static Stress Changes and the Triggering of Earthquakes[J]. Bulletin⁃Seismological Society of America, 1994, 84(3): 935-953.
[47] 汪建军, 许才军, 申文斌. 2010年Mw 6.9玉树地震同震库仑应力变化研究[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1207-1211. WANG Jianjun, XU Caijun, SHEN Wenbin. The Coseismic Coulomb Stress Changes Induced by the 2010 Mw 6.9 Yushu Earthquake, China and Its Implication to Earthquake Hazards[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1207-1211.
[48] 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. SHAN Xinjian, QU Chunyan, GONG Wenyu, et al. Coseismic Deformation Field of the Jiuzhaigou Ms 7.0 Earthquake from Sentinel-1A InSAR Data and Fault Slip Inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4527-4536.
[49] 刘博研, 解孟雨, 史保平. 青海玛多Ms 7.4地震对周边活动断裂的库仑应力加载及发震概率增量的计算[J]. 地球物理学报, 2022, 65(2): 563-579. LIU Boyan, XIE Mengyu, SHI Baoping. Effect of Qinghai Madoi Ms 7.4 Earthquake on Coulomb Stress and Earthquake Probability Increment of Adjacent Faults[J]. Chinese Journal of Geophysics, 2022, 65(2): 563-579.
[50] TODA S, STEIN R S, RICHARDS-DINGER K, et al. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(5): 1-17.
[51] POPE N, MOONEY W D. Coulomb Stress Models for the 2019 Ridgecrest, California Earthquake Sequence[J]. Tectonophysics, 2020, 791: 228555.
[52] WESSEL P, LUIS J F, UIEDA L, et al. The Generic Mapping Tools Version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.