甘肃积石山Ms 6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理

许强, 彭大雷, 范宣梅, 董秀军, 张晓超, 王欣

许强, 彭大雷, 范宣梅, 董秀军, 张晓超, 王欣. 甘肃积石山Ms 6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 207-222. DOI: 10.13203/j.whugis20240007
引用本文: 许强, 彭大雷, 范宣梅, 董秀军, 张晓超, 王欣. 甘肃积石山Ms 6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 207-222. DOI: 10.13203/j.whugis20240007
XU Qiang, PENG Dalei, FAN Xuanmei, DONG Xiujun, ZHANG Xiaochao, WANG Xin. Preliminary Study on the Characteristics and Initiation Mechanism of Zhongchuan Flowslide Due to Liquefaction Triggered by the Ms 6.2 Jishishan Earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 207-222. DOI: 10.13203/j.whugis20240007
Citation: XU Qiang, PENG Dalei, FAN Xuanmei, DONG Xiujun, ZHANG Xiaochao, WANG Xin. Preliminary Study on the Characteristics and Initiation Mechanism of Zhongchuan Flowslide Due to Liquefaction Triggered by the Ms 6.2 Jishishan Earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 207-222. DOI: 10.13203/j.whugis20240007

甘肃积石山Ms 6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理

基金项目: 

国家自然科学基金 42125702

国家自然科学基金 42007275

国家自然科学基金 42377196

国家重点研发计划 2022YFC3003205

四川省自然科学基金重大项目 2022NSFSC0003

新基石科学基金会所设立的科学探索奖 XPLORER-2022-1012

青海省应急管理厅委托项目(2024-自然灾害处-01) 

详细信息
    作者简介:

    许强,博士,教授,主要从事地质灾害评价预测与防治处理研究。xq@cdut.edu.cn

Preliminary Study on the Characteristics and Initiation Mechanism of Zhongchuan Flowslide Due to Liquefaction Triggered by the Ms 6.2 Jishishan Earthquake in Gansu Province

  • 摘要:

    2023-12-18甘肃积石山Ms 6.2地震在青海省海东市民和县中川乡金田村和草滩村触发了一起典型地震液化型滑坡-泥流,致使大量房屋被厚达数米的淤泥包围掩埋,因其表现出显著的突发性和超强的流动性,曾被误认为“砂涌”。通过现场调查和遥感解译分析,确认该地质灾害为地震触发的液化型滑坡-泥流,并探讨了其成因机理。结果表明:(1)此次地质灾害是地震过程中的振动荷载导致台塬底部饱水粉砂层(黄土层)液化,形成滑坡并转化为泥流,泥流沿沟谷流动到达村庄后漫流成灾,并不是传统意义上的就地“砂涌”;(2)滑源区在液化过程中具体表现为溃散性破坏和侧向扩离两种失稳模式;(3)地震触发土体液化多发生在具有明显应变软化特征的饱水颗粒材料(粉质黄土、细砂等)中。此类地质灾害发生具有突发性,失稳后往往呈流体状远程运动,易造成灾难性后果,应引起高度重视。

    Abstract:

    On 18th December 2023, an Ms 6.2 earthquake centered in Jishishan County, Gansu Province triggered a prototypical earthquake-induced liquefaction flowslide in Jintian Village and Caotan Village, Zhongchuan Township, Minhe County, Haidong City, Qinghai Province. This hazard caused numerous buildings to be engulfed and interred by several meters of deposits. Owing to the abruptness of its occurrence and extremely high fluidity, it was mistakenly identified as a“sand surge”. Through on-site investigation and remote sensing imagery analysis, we confirm this flowslide to be an earthquake-triggered liquefied flowslide event, and explore its causal mechanisms. The results show that: (1) This flowslide was induced by seismic vibratory loading causing liquefaction of the saturated silt layer (loess layer) underlying the plateau, forming a landslide that transformed into a mudflow moving along the valley, rather than an in-situ“sand surge”in the conventional sense. (2) This flowslide includes two failure modes: diffuse failure and lateral spreading. (3) Earthquake-induced soil liquefaction frequently occurs in saturated granular materials (silts, fine sands, etc.) exhibiting prominent strain softening characteristics. The occurrence of such geological hazard is abrupt. Post-instability, the landslide mass flows significant distances like a fluid, readily resulting in catastrophic consequences. This warrants heightened attention.

  • 感谢应急管理部国家减灾中心提供震后高分辨无人机影像数据,京创智慧科技有限责任公司提供震后高精度的三维实景模型数据,欧洲空间局提供的Sentinel-2光学影像,成都理工大学李为乐教授提供印度尼西亚帕卢7.5级地震触发灾难性滑坡前后影像数据;感谢甘肃省和青海省各级单位给予现场调查工作的支持;参与此次调查的还有吉峰教授、王文松研究员、夏明垚研究员、戴岚欣博士、巨袁臻博士、蒋力洋、魏涛、方成勇、杨航、张宗硕、李泽寰、沈宇洋、薛泽远、王高远、周灿平,在此一并表示感谢!
    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240007
  • 图  1   积石山Ms 6.2地震

    Figure  1.   Jishishan Ms 6.2 Earthquake

    图  2   水文地质条件

    Figure  2.   Hydrogeologic Condition

    图  3   高密度电法探测的地下水位分布

    Figure  3.   Distribution of Groundwater Level Detected by High-Density Electrical Method

    图  4   滑源区地层分布

    Figure  4.   Distribution of Strata in the Source Area of the Loess Flowslide

    图  5   中川乡地震滑坡-泥流前后遥感图、运动路径及滑坡-泥流分区图

    Figure  5.   Positive Photographic Images of Pre-sliding and Post-sliding, Movement Route, and Zonation Map of the Flowslide

    图  6   滑源区失稳破坏特征

    Figure  6.   Characteristics of Instability and Failure in the Source Area of the Loess Flowslide

    图  7   滑源区发育特征

    Figure  7.   Development Characteristics of the Source Area of the Loess Flowslide

    图  8   滑坡-泥流的流通堆积特征

    Figure  8.   Transition and Accumulation Characteristics of the Flowslide

    图  9   1920年海原8.5级地震诱发宁夏西吉党家岔滑坡(照片拍摄于1966年)及其区域地形[17]

    Figure  9.   Dangjiacha Landslide in Xiji, Ningxia, Triggered by the 1920 Haiyuan Earthquake (Photo Taken in 1966) and Its Topographic Map[17]

    图  10   2018年印度尼西亚帕卢7.5级地震引发土壤液化滑坡(a、d) Balaroa滑坡前后影像;(b、e) Petobo滑坡前后影像;(c、f) Tinggede滑坡前后影像

    Figure  10.   Soil Liquefaction Landslide Caused by the 2018 Palu 7.5 Magnitude Earthquake in Indonesia (a,d) Pre- and Post-sliding Images of Balaroa Landslide; (b,e) Pre- and Post-sliding Images of Petobo Landslide; (c,f) Pre- and Post-sliding Images of Tinggede Landslide

    图  11   2018年日本北海道6.6级地震引发土壤液化滑坡[17]

    Figure  11.   Soil Liquefaction Landslide Caused by the 6.6 Magnitude Earthquake in Hokkaido, Japan in 2018[17]

    图  12   长期灌溉触发甘肃永靖县盐锅峡镇黑方台党川2#滑坡[26]

    (a)滑坡发生前地貌;(b)滑坡发生后地貌

    Figure  12.   Dangchuan 2# Loess Landslide Triggered by Long-Term Irrigation at Heifangtai Terrace in Yanguoxia Town, Yongjing County, Gansu Province[26] (a) Landform and Topography of Pre-sliding, (b) Landform and Topography of Post-sliding

    图  13   金田村掩埋后照片和搜救现场(新华社拍摄)

    Figure  13.   Photos of Jintian Village After Burial and Search and Rescue Scene (Taken by Xinhua News Agency)

    图  14   泥流是从上游流下而非地下涌出的现场实证

    Figure  14.   Field Evidence Shows that Mudflows Originate from Upstream Rather than Underground

    图  15   地震土体液化喷砂机制示意图(现场图片来自中国地震局地震预测研究所路畅研究员)

    Figure  15.   Schematic Diagram of Liquefaction Sandblasting Mechanism of Seismic Soil (On-Site Photo from Researcher Lu Chang at Institute of Earthquake Forecasting, China Earthquake Administration)

    图  16   地震触发黄土液化特征[18, 32]

    Figure  16.   Earthquake-Induced Loess Liquefaction Characteristics[18, 32]

    图  17   地震触发中川乡液化型滑坡-泥流失稳模式

    Figure  17.   Failure Model of Zhongchuan Town Flowslide Triggerd by Earthquake

    表  1   本文所使用的数据集

    Table  1   Databases Used in This Study

    数据类型数据来源时间空间分辨率/m
    震前影像Key Hole1961-11-152
    Google Earth2022-04-070.5
    高分7号2022-10-160.65
    Sentinel-22023-12-1810
    震前数字高程模型(digital elevation model,DEM)高分7号立体相对数据2022-10-165
    震后影像Sentinel-22023-12-2010
    无人机低空摄影测量2023-12-190.1
    无人机三维倾斜测量数据2023-12-250.03
    震后DEM无人机低空摄影测量2023-12-190.5
    带地面相控点无人机三维倾斜测量数据2023-12-250.1
    下载: 导出CSV
  • [1] 王立朝, 侯圣山, 董英, 等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报, 2024, 35(3): 108-118.

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic Characteristics of Co-seismic Geological Hazards Induced by Jishishan Ms 6.2 Earthquake and Suggestions for Their Risk Control[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 108-118.

    [2] 铁永波, 张宪政, 曹佳文,等. 积石山Ms 6.2和泸定Ms 6.8地震地质灾害发育规律对比[J]. 成都理工大学学报(自然科学版),2024,51(1):9-21,59.

    Yongbo TIE,ZHANG Xianzheng,CAO Jiawen, et al. Comparative Research of Characteristics of Geological Hazards Induced by Jishishan (Ms 6.2) and Luding (Ms 6.8) Earthquakes[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2024,51(1):9-21,59.

    [3] 李为乐, 许强, 李雨森,等. 2023年积石山Ms 6.2地震同震地质灾害初步分析[J]. 成都理工大学学报(自然科学版), 2024,51(1): 33-45,90.

    LI Weile,XU Qiang,LI Yusen, et al. Preliminary Analysis of the Coseismic Geohazards Induced by the 2023 Ms 6.2 Jishishan Earthquake[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2024,51(1):33-45,90.

    [4] 王运生, 赵波, 吉锋,等. 2023年甘肃积石山 Ms 6.2 地震震害异常的启示[J]. 成都理工大学学报(自然科学版),2024,51(1):1-8.

    WANG Yunsheng,ZHAO Bo,JI Feng, et al. Preliminary Insights into Hazards Triggered by the 2023 Ms 6.2 Jishishan Earthquake, Gansu Province[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2024,51(1):1-8.

    [5]

    LI M Y, MA C, DU C, et al. Landslide Response to Vegetation by Example of July 25–26, 2013, Extreme Rainstorm, Tianshui, Gansu Province, China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 751-764.

    [6]

    ZHANG F Y, YAN B B, FENG X M, et al. A Rapid Loess Mudflow Triggered by the Check Dam Failure in a Bulldoze Mountain Area, Lanzhou, China[J]. Landslides, 2019, 16(10): 1981-1992.

    [7] 董广辉,张帆宇,刘峰文,等. 喇家遗址史前灾害与黄河大洪水无关[J]. 中国科学:地球科学, 2018, 48(4): 467-475.

    DONG Guanghui,ZHANG Fanyu,LIU Fengwen, et al.Ultiple Evidences Indicate no Relationship Between Prehistoric Disasters in Lajia Site and Outburst Flood in Upper Yellow River Valley, China[J]. Scientia Sinica (Terrae), 2018, 48(4): 467-475.

    [8] 黄春长,郭永强,张玉柱,等.青海官亭盆地喇家遗址全新世地层序列与史前灾难研究[J]. 中国科学: 地球科学, 2019, 49(2): 434-455.

    HUANG Chunchang,GUO Yongqiang,ZHANG Yuzhu, et al. Holocene Sedimentary Stratigraphy and Pre-historical Catastrophes over the Lajia Ruins Within the Guanting Basin in Qinghai Province of China[J]. Scientia Sinica (Terrae), 2019, 49(2): 434-455.

    [9] 张玉柱, 黄春长, 周亚利, 等. 黄河上游积石峡史前滑坡堰塞湖形成年代与发展演变研究[J]. 中国科学: 地球科学, 2017, 47(11): 1357-1370.

    ZHANG Yuzhu,HUANG Chunchang,ZHOU Yali, et al. Formation and Development of the Prehistorical Landslide Dammed-Lake in the Jishixia Gorge Along the Upper Yellow River[J]. Scientia Sinica (Terrae), 2017, 47(11): 1357-1370.

    [10] 郑紫星, 黄春长, 赵辉, 等. 青海喇家遗址全新世中期土壤与泥流沉积物地球化学特征[J]. 山地学报, 2018, 36(1): 1-12.

    ZHENG Zixing, HUANG Chunchang, ZHAO Hui, et al. Geochemical Characteristics of the Mid-Holocene Palaeosol and Mudflow Deposits in the Lajia Ruins of Qinghai Province[J]. Mountain Research, 2018, 36(1): 1-12.

    [11] 王海燕, 庞奖励, 黄春长, 等. 青海喇家遗址地层划分及齐家文化废墟覆盖层成因分析[J]. 地理科学, 2020, 40(5): 853-862.

    WANG Haiyan, PANG Jiangli, HUANG Chunchang, et al. Stratigraphic Subdivisions and Formation of the Sediment Overlying the Lajia Ruins of the Qinghai Province[J]. Scientia Geographica Sinica, 2020, 40(5): 853-862.

    [12] 王勤彩,罗钧,陈翰林,等. 2023年12月18日甘肃积石山6.2级地震震源机制解[J]. 地震 ,2024,44(1):185-188.

    WANG Qincai,LUO Jun,CHEN Hanlin, et al. Focal Mechanism for the December 18 ,2023, Jishishan M 6 Earthauake in Gansu Province[J]. Earthquake, 2024,44(1):185-188.

    [13] 炊郁达, 黄春长, 庞奖励, 等. 青海喇家遗址土壤序列及史前山洪泥流灾难释光测年研究[J]. 地理学报, 2019, 74(11): 2371-2384.

    CHUI Yuda,HUANG Chunchang, PANG Jiangli, et al. OSL Dating of the Pedo-stratigraphic Sequence and the Prehistoric Flash Floods and Mudflows over the Lajia Ruins of Qinghai Province[J]. Acta Geographica Sinica, 2019, 74(11): 2371-2384.

    [14]

    TREMBLAY-AUGER F, LOCAT A, LEROUEIL S, et al. The 2016 Landslide at Saint-Luc-de-Vincennes, Quebec: Geotechnical and Morphological Analysis of a Combined Flowslide and Spread[J]. Canadian Geotechnical Journal, 2021, 58(2): 295-304.

    [15] 地理发现与探索.直面 | 积石山6.2 级地震次生泥流灾害透视(上篇) [OL]. https://mp.weixin.qq.com/s/IV3T5xJ1wsmNpVnPTBPcDg,2024.

    Geographical Discovery and Exploration. Face to Face | Perspectives on Secondary Mud Flow Hazards Caused by Jishishan 6.2 Earthquake (Part 1)[OL]. 2024 https://mp.weixin.qq.com/s/IV3T5xJ1wsmNpVnPTBPcDg,2024.

    [16] 张晓超, 裴向军, 张茂省, 等. 强震触发黄土滑坡流滑机理的试验研究: 以宁夏党家岔滑坡为例[J]. 工程地质学报, 2018, 26(5): 1219-1226.

    ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental Study on Mechanism of Flow Slide of Loess Landslides Triggered by Strong Earthquake—A Case Study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219-1226.

    [17]

    WANG G H, ZHANG D X, FURUYA G, et al. Pore-Pressure Generation and Fluidization in a Loess Landslide Triggered by the 1920 Haiyuan Earthquake, China: A Case Study[J]. Engineering Geology, 2014, 174: 36-45.

    [18] 张晓超, 黄润秋, 许模,等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学, 2014, 35(3): 801-810.

    ZHANG Xiaochao, HUANG Runqiu, XU Mo, et al. Loess Liquefaction Characteristics and Its Influential Factors of Shibeiyuan Landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801-810.

    [19] 王国亚, 任路滨, 吴玮江,等. 甘肃岷县永光村滑坡特征及其成因研究[J]. 冰川冻土, 2019, 41(2): 392-399.

    WANG Guoya, REN Lubin, WU Weijiang, et al. Characteristics and Causes of the Landslide Outbreaking in Yongguangcun, Minxian County, Gansu Province[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 392-399.

    [20] 吴志坚, 陈豫津, 王谦, 等. 岷县漳县6.6级地震永光村滑坡致灾机制分析[J]. 岩土工程学报, 2019, 41(S2): 165-168.

    WU Zhijian, CHEN Yujin, WANG Qian, et al. Disaster-Causing Mechanism of Yongguang Landslide Under Minxian-Zhangxian Ms 6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165-168.

    [21]

    WATKINSON I M, HALL R. Impact of Communal Irrigation on the 2018 Palu Earthquake-Triggered Landslides[J]. Nature Geoscience, 2019, 12: 940-945.

    [22]

    BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-Triggered 2018 Palu Valley Landslides Enabled by Wet Rice Cultivation[J]. Nature Geoscience, 2019, 12: 935-939.

    [23]

    WANG F R, FAN X M, YUNUS A P, et al. Coseismic Landslides Triggered by the 2018 Hokkaido, Japan (Mw 6.6), Earthquake: Spatial Distribution, Controlling Factors, and Possible Failure Mechanism[J]. Landslides, 2019, 16(8): 1551-1566.

    [24] 彭大雷, 许强, 董秀军, 等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.

    PENG Dalei, XU Qiang, DONG Xiujun, et al. Application of Unmanned Aerial Vehicles Low-Altitude Photogrammetry in Investigation and Evaluation of Loess Landslide[J]. Advances in Earth Science, 2017, 32(3): 319-330.

    [25]

    PENG D L, XU Q, ZHANG X L, et al. Hydrological Response of Loess Slopes with Reference to Widespread Landslide Events in the Heifangtai Terrace, NW China[J]. Journal of Asian Earth Sciences, 2019, 171: 259-276.

    [26] 许强, 彭大雷, 亓星, 等. 2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J]. 工程地质学报, 2016, 24(2): 167-180.

    XU Qiang, PENG Dalei, QI Xing, et al. Dangchuan 2# Landslide of April 29, 2015 in Heifangtai Area of Gansu Province: Characteristices and Failure Mechanism[J]. Journal of Engineering Geology, 2016, 24(2): 167-180.

    [27] 地质灾害防治与地质环境保护国家重点实验室. 甘肃积石山6.2 级地震中川乡泥流(“砂涌”)成因分析[OL]. https://mp.weixin.qq.com/s/2CKNIhj4YqKjNrKLIZVPSQ,2023.

    State Key Laboratory of Geohazard Prevention and Geoenvironment Protection. Analysis of the Causes of Mud Flow (“Sand Surge”) in Chuanxiang Township During the 6.2 Magnitude Earthquake in Jishishan, Gansu Province[OL]. https://mp.weixin.qq.com/s/2CKNIhj4YqKjNrKLIZVPSQ,2023.

    [28]

    TRIFUNAC M D. Empirical Criteria for Liquefaction in Sands via Standard Penetration Tests and Seismic Wave Energy[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(6): 419-426.

    [29]

    HUANG Y, YU M. Review of Soil Liquefaction Characteristics During Major Earthquakes of the Twenty-First Century[J]. Natural Hazards, 2013, 65(3): 2375-2384.

    [30] 柴少峰, 王兰民, 王平, 等. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究[J]. 岩土工程学报, 2023, 45(12): 2565-2574.

    CHAI Shaofeng, WANG Lanmin, WANG Ping, et al. Shaking Table Tests on Sliding Characteristics and Mechanism of Liquefaction Landslide of Low-Angle Loess Deposit in Shibeiyuan[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2565-2574.

    [31] 王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(S2): 4168-4173.

    WANG Qian, WANG Jun, WANG Lanmin, et al. Discussion on Earthquake Liquefaction Mechanism of Saturated Loess in Shibeiyuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4168-4173.

    [32] 张晓超. 地震诱发石碑塬低角度黄土滑坡形成机理的试验研究[D]. 成都: 成都理工大学, 2015.

    ZHANG Xiaochao. Experimental Study on the Formation Mechanism of Low-Angle Loess Landslide Induced by Earthquake in Shibeiyuan[D]. Chengdu: Chengdu University of Technology, 2015.

    [33] 王兰民, 刘红玫, 李兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报, 2000, 22(1): 89-94.

    WANG Lanmin, LIU Hongmei, LI Lan, et al. Laboratory Study on the Mechanism and Beheviors of Saturated Loess Liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 89-94.

    [34] 中国地震局工程力学研究所. 甘肃积石山6.2级地震(第1报)[EB/OL] . [2023-12-27]. https://www.iem.ac.cn/detail.html?id=2963.

    Institute of Engineering Mechanics, CEA. Gansu Jishishan 6.2 Magnitude Earthquake (Report 1st)[EB/OL]. [2023-12-27]. https://www.iem.ac.cn/detail.html?id=2963.

    [35]

    XU Q, ZHAO K Y, LIU F Z, et al. Effects of Land Use on Groundwater Recharge of a Loess Terrace Under Long-Term Irrigation[J]. Science of the Total Environment, 2021, 751: 142340.

    [36] 张宪政, 铁永波, 宁志杰, 等. 四川汶川县板子沟“6·26” 特大型泥石流成因特征与活动性研究 [J]. 水文地质工程地质, 2023, 50(5): 134-145.

    ZHANG Xianzheng, Yongbo TIE, NING Zhijie, et al. Characteristics and Activity Analysis of the Catastrophic “6·26” Debris Flow in the Banzi Catchment, Wenchuan County of Sichuan Province[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134-145.

图(17)  /  表(1)
计量
  • 文章访问数:  1343
  • HTML全文浏览量:  300
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2025-02-04

目录

    /

    返回文章
    返回