基于高频GNSS观测的甘肃积石山Ms 6.2地震同震形变

李志才, 陈智, 武军郦, 周星, 张鸣之, 赵利江, 余博尧, 周佳, 张澍

李志才, 陈智, 武军郦, 周星, 张鸣之, 赵利江, 余博尧, 周佳, 张澍. 基于高频GNSS观测的甘肃积石山Ms 6.2地震同震形变[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 236-246. DOI: 10.13203/j.whugis20240004
引用本文: 李志才, 陈智, 武军郦, 周星, 张鸣之, 赵利江, 余博尧, 周佳, 张澍. 基于高频GNSS观测的甘肃积石山Ms 6.2地震同震形变[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 236-246. DOI: 10.13203/j.whugis20240004
LI Zhicai, CHEN Zhi, WU Junli, ZHOU Xing, ZHANG Mingzhi, ZHAO Lijiang, YU Boyao, ZHOU Jia, ZHANG Shu. Coseismic Deformation of the Ms 6.2 Jishishan Earthquake in Gansu Province Based on High-Frequency GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 236-246. DOI: 10.13203/j.whugis20240004
Citation: LI Zhicai, CHEN Zhi, WU Junli, ZHOU Xing, ZHANG Mingzhi, ZHAO Lijiang, YU Boyao, ZHOU Jia, ZHANG Shu. Coseismic Deformation of the Ms 6.2 Jishishan Earthquake in Gansu Province Based on High-Frequency GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 236-246. DOI: 10.13203/j.whugis20240004

基于高频GNSS观测的甘肃积石山Ms 6.2地震同震形变

基金项目: 

国家重点研发计划 2021YFC3000503

中国地震局地震预测研究所基本科研业务费 CEAIEF2022010101

详细信息
    作者简介:

    李志才,博士,教授,主要从事卫星导航定位及大地测量反演研究。zcli@cumtb.edu.cn

Coseismic Deformation of the Ms 6.2 Jishishan Earthquake in Gansu Province Based on High-Frequency GNSS Observation

  • 摘要:

    2023-12-18发生的甘肃积石山6.2级地震造成了重大的人员伤亡。收集了不同系统32个卫星导航定位基准站(continuously operating reference stations,CORS)当天的高频全球导航卫星系统(global navigation satellite system,GNSS)观测数据,进行了高精度动态单历元数据处理。结果发现,震中附近50 km以内的高频GNSS可以监测到明显的同震形变波形,峰值变化最大达到50~60 mm;地震永久变形主要影响范围为距离震中30 km的区域,距离震中5 km的测站记录到东西向永久变形~13 mm、南北向变形~10 mm,以及~8 mm的垂向变形。采用自适应噪声完全集合经验模态分解方法对高频GNSS波形信号进行分解,可分离出明显的同震形变信号,最远可探测到距离震中100 km。采用模态分解方法可探测出更多的同震信号,这为利用丰富的CORS资源监测地震的同震形变提供更多可行性。

    Abstract:
    Objectives 

    The aim of this study is to obtain a high-precision coseismic deformation field of an Ms 6.2 magnitude earthquake occurred in Jishishan County, Gansu Province, China from high⁃frequency global navigation satellite system (GNSS) observation data, which will enable the real-time monitoring of deformations for earthquakes with a magnitude of 6 or higher using a massive network of continuously ope⁃rating reference stations (CORS).

    Methods 

    This study employed the PRIDE 3.0 software developed by Wuhan University for high-precision dynamic processing of 32 CORS with high- frequency data, obtaining coseismic deformation time series for each station. For stations showing significant coseismic responses in close proximity, dynamic solutions with large changes at the seismic moment were first excluded. The smoothed single-epoch results before and after the earthquake were retained. For stations with less obvious coseismic responses, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method was used to detect high-frequency coseismic signals.

    Results 

    The main range of permanent deformation caused by earthquake is in the area 30 km away from the epicenter. Stations 5 km away from the epicenter recorded permanent deformation in the east-west direction of 13 mm, north-south direction of 10 mm, and vertical deformation of 8 mm. Modal decomposition identified 13 stations with seismic responses in the east or north directions, including CORS LXJS, GUTI, LXYJ within a 40 km radius from the epicenter. It could detect the seismic deformation far from 100 km better than the original GNSS results, which means this method could be used for waveform signal reconstruction, noise removal, and expanding the distance of CORS monitoring for coseismic signals.

    Conclusions 

    This study indicate that various types of CORS equipment with different foundation can monitor earthquake signals. The CEEMDAN method for signal decomposition can detect coseismic signals faraway, providing feasibility for monitoring seismic coseismic deformation information using a large number of CORS resources in the future.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20240004
  • 图  1   地质构造与测站分布图

    注:绿色线条表示发震断层的地表投影线;三角形标记的为本文收集的站点资源;浅黄色正方形标记的为研究区域其他单位分布的站点。

    Figure  1.   Geological Structure and Distribution of CORS

    图  2   高频GNSS观测的单历元解

    Figure  2.   Single Epoch Solutions for High-Frequency GNSS Observations

    图  3   高频GNSS观测的永久同震形变场

    注:箭头的误差椭圆置信度为35%;红色五角星表示震中;灰色线条表示断裂带。

    Figure  3.   Permanent Coseismic Deformation Fields Observed by High-Frequency GNSS Observations

    图  4   积石山地震东方向CEEMDAN分解结果

    注:红色虚线表示发震时刻。

    Figure  4.   CEEMDAN Decomposition Results of the Jishishan Earthquake on the Eastward Direction

    图  5   积石山地震各站点IMF2分量

    注:黑色虚线表示发震时刻。

    Figure  5.   IMF2 Components at Various Stations of the Jishishan Earthquake

    表  1   本文所用CORS基本信息

    Table  1   Basic Information of the CORS Used in This Paper

    序号站点类型站点数量/个建设运行单位接收机型号(地震区域)主要用途技术特征备注
    1基岩/土层139甘肃省测绘工程院Trimble R9省级CORS服务实时RTK覆盖本省
    2基岩/土层114青海省基础测绘院Trimble R9省级CORS服务实时RTK覆盖本省
    3楼顶/土层超2 500北京讯腾智慧科技有限公司CHC P5U燃气泄漏检测实时覆盖全国
    4标准观测墩/混凝土墩/钢结构等超5万中国地质环境监测院NOV OEM729⁃2.03地质滑坡等灾害监测实时覆盖全国
    下载: 导出CSV

    表  2   站点距震中距离与方位信息

    Table  2   Distance and Azimuth Information Between Stations and Epicenter

    序号站点代码震中距离/km距震中方位位置来源
    1LXJS5震中附近甘肃省甘肃省CORS
    2GUTI23正北方向青海省青海省CORS
    3LXYJ31近东方向甘肃省甘肃省CORS
    4QHLH33西北方向青海省讯腾公司
    5XUNH35东北方向青海省青海省CORS
    6GSMA36东南方向甘肃省讯腾公司
    7gsl942东南方向甘肃省地质灾害监测站
    8QHMH63西北方向青海省讯腾公司
    9QHHL65西北方向青海省讯腾公司
    10GSXA78西南方向甘肃省讯腾公司
    11GSLA82东北方向甘肃省讯腾公司
    12lzan91东北方向甘肃省地质灾害监测站
    13QHGO99西北方向青海省讯腾公司
    下载: 导出CSV

    表  3   高频GNSS同震永久位移

    Table  3   Coseismic Permanent Displacement from High⁃Frequency GNSS

    站点代码经度/(°E)纬度/(N°)东向形变/mm北向形变/mm垂向形变/mm东向误差/mm北向误差/mm垂向误差/mm
    LXJS102.85335.70213.6-10.98.62.65.16.4
    GUTI102.84135.9054.6-1.4-0.84.36.91.7
    LXYJ103.13435.8791.40.1-1.26.85.13.2
    XUNH102.45735.854-0.54.2-5.95.27.911.5
    gsl9103.23035.5551.4-1.00.61.35.64.4
    下载: 导出CSV
  • [1] 中国地震台网中心. 甘肃临夏回族自治州积石山县6.2级地震[EB/OL]. (2024-01-05) https://news.ceic.ac.cn/CC20231218235930.html.

    The 6.2 Magnitude Eearthquake in Jishishan County, Linxia Hui Autonomous Prefecture, Gansu Pro⁃vince [EB/OL]. (2024-01-05) https://news.ceic.ac.cn/CC20231218235930.html.

    [2] 陈继锋, 林向东, 何新社. 2013年甘肃岷县Ms 6.6地震矩张量反演及发震构造初探[J]. 地震工程学报, 2013, 35(3): 425-431.

    CHEN Jifeng, LIN Xiangdong, HE Xinshe. Moment Tensor Inversion and Seismogenic Tectonics of the 2013 Minxian Ms 6.6 Earthquake in Gansu[J]. China Earthquake Engineering Journal, 2013, 35(3): 425-431.

    [3] 中国地震局地球物理研究所. 2023年12月18日甘肃临夏回族自治州积石山县6.2级地震科技支撑简报[EB/OL]. (2023-12-19) https://www.cea-igp.ac.cn/kydt/ 280418.html.

    Institute of Geophysics, China Earthquake Administration. Brief Report on Scientific and Technological Support for the 6.2 Magnitude Earthquake in Jishishan County, Linxia Hui Autonomous Prefecture, Gansu Province on December18, 2023 [EB/OL] (2023-12-19) https://www.cea-igp.ac.cn/kydt/ 280418.html.

    [4] 王勤彩, 罗钧, 陈翰林, 等. 2023年12月18日甘肃积石山6.2级地震震源机制解[J]. 地震, 2024, 44(1): 185-188.

    WANG Qincai, LUO Jun, CHEN Hanlin, et al. Focal Mechanism for the December 18, 2023, Jishishan Ms 6.2 Earthquake in Gansu Province[J]. Earthquake, 2024, 44(1): 185-188.

    [5] 黄观文,景策,李东旭等.甘肃积石山Ms 6.2地震对滑坡易发区的变形影响分析[J].武汉大学学报(信息科学版), 2023,DOI: 10.13203/j.whugis20230490. doi: 10.13203/j.whugis20230490

    HUANG Guanwen, JING Ce, LI Dongxu, et al. Deformation Analysis of the Ms 6.2 Jishishan Earthquake on the Landslide Hazard Areas[J]. Geomatics and Information Science of Wuhan University, 2023, DOI: 10.13203/j.whugis20230490. doi: 10.13203/j.whugis20230490

    [6] 陈博,宋闯,陈毅,等.2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J].武汉大学学报(信息科学版), 2024, DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J]. Geomatics and Information Science of Wuhan Universit, 2024, DOI: 10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    [7] 王立朝,侯圣山,董英,等.甘肃积石山Ms 6.2地震的同震地质灾害基本特征及风险防控建议[J]. 中国地质灾害与防治学报, 2023, 35(3): 108-118.

    WANG Lichao, HOU Shengshan, DONG Ying,et al. Basic Characteristics of Coseismic Geological Hazards Induced by Jishishan Ms 6.2 Earthquake and Suggestions for Their Risk Control[J]. The Chinese Journal of Geological Hazard and Control, 2023, 35(3): 108-118.

    [8] 万永革, 万永魁, 靳志同, 等. 用形变资料反演1976年唐山地震序列的破裂分布[J]. 地球物理学报, 2017, 60(9): 3378-3395.

    WAN Yongge, WAN Yongkui, JIN Zhitong, et al. Rupture Distribution of the 1976 Tangshan Earthquake Sequence Inverted from Geodetic Data[J]. Chinese Journal of Geophysics, 2017, 60(9): 3378-3395.

    [9] 万永革, 王敏, 沈正康, 等. 利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J]. 地震地质, 2004, 26(3): 393-404.

    WAN Yongge, WANG Min, SHEN Zhengkang, et al. Coseismic Slip Distribution of the 2001 West of Kunlun Mountain Pass Earthquake Inverted by GPS and Leveling Data[J]. Seismology and Geology, 2004, 26(3): 393-404.

    [10] 李志才, 张鹏, 金双根, 等. 基于GPS观测数据的汶川地震断层形变反演分析[J]. 测绘学报, 2009, 38(2): 108-113.

    LI Zhicai, ZHANG Peng, JIN Shuanggen, et al. Wenchuan Earthquake Deformation Fault Inversion and Analysis Based on GPS Observations[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2): 108-113.

    [11]

    JIANG Z S, WANG M, WANG Y Z, et al. GPS Constrained Coseismic Source and Slip Distribution of the 2013 Mw 6.6 Lushan, China, Earthquake and Its Tectonic Implications[J]. Geophysical Research Letters, 2014, 41(2): 407-413.

    [12]

    LI Z C, WEN Y M, ZHANG P, et al. Joint Inversion of GPS, Leveling, and InSAR Data for the 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications[J]. Remote Sensing, 2020, 12(4): 715.

    [13] 李志才, 丁开华, 张鹏, 等. GNSS观测的2021年青海玛多地震(Mw 7.4)同震形变及其滑动分布[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1489-1497.

    LI Zhicai, DING Kaihua, ZHANG Peng, et al. Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Madoi Earthquake from GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1489-1497.

    [14] 吴伟伟, 孟国杰, 刘泰, 等. 2022年泸定6.8级地震GNSS同震形变场及其约束反演的破裂滑动分布[J]. 地球物理学报, 2023, 66(6): 2306-2321.

    WU Weiwei, MENG Guojie, LIU Tai, et al. Coseismic Displacement Field and Slip Distribution of the 2022 Luding Ms 6.8 Earthquake Derived from GNSS Observations[J]. Chinese Journal of Geophysics, 2023, 66(6): 2306-2321.

    [15]

    WRIGHT T J, HOULIÉ N, HILDYARD M, et al. Real-Time, Reliable Magnitudes for Large Earthquakes from 1 Hz GPS Precise Point Positio-ning: The 2011 Tohoku-Oki (Japan) Earthquake[J]. Geophysical Research Letters, 2012, 39(12): L12302.

    [16]

    DING K H, WANG Q, LI Z C, et al. Rapid Source Determination of the 2021 Mw 7.4 Maduo Earthquake by a Dense High-Rate GNSS Network in the Tibetan Plateau[J]. Seismological Research Letters, 2022, 93(6): 3234-3245.

    [17]

    ZANG J F, WEN Y M, LI Z C, et al. Rapid Source Models of the 2021 Mw 7.4 Maduo, China, Earthquake Inferred from High-Rate BDS3/2, GPS, Galileo and GLONASS Observations[J]. Journal of Geodesy, 2022, 96(9): 58.

    [18]

    LI Z C, ZANG J F, FAN S J, et al. Real-Time Source Modeling of the 2022 Mw 6.6 Menyuan, China Earthquake with High-Rate GNSS Observations[J]. Remote Sensing, 2022, 14(21): 5378.

    [19] 郑佳伟, 李敏, 方荣新, 等. 联合高频GNSS和强震数据快速反演四川泸定6.8级地震断层破裂特征[J]. 地球物理学报, 2023, 66(4): 1419-1427.

    ZHENG Jiawei, LI Min, FANG Rongxin, et al. Rapid Inversion of Fault Rupture Characteristics for the Luding M 6.8 Earthquake in Sichuan with High-Rate GNSS and Strong-Motion Data[J]. Chinese Journal of Geophysics, 2023, 66(4): 1419-1427.

    [20] 熊伟. 世界主要国家和地区卫星导航定位基准站建设与应用有关情况[J]. 测绘地理信息发展动态, 2023, 10:1-9.

    XIONG Wei. Construction and Application of Satellite Navigation and Positioning Reference Stations in Major Countries and Regions of the World[J]. Development Trends of Surveying,Mapping and Geographic Information,2023, 10:1-9.

    [21] 张鸣之,杨飞,马娟,等.区块链技术在全国地质灾害风险预警系统建设中的应用探索[J].水文地质工程地质, 2023, 50(6):168-174.

    ZHANG Mingzhi, YANG Fei, MA Juan, et al. Exploration of Blockchain Technology Application in the Construction of National Risk Warning System on Landslides[J]. Hydrogeology & Engineering Geo⁃logy, 2023, 50(6): 168-174.

    [22] 李智敏, 田勤俭, 屠泓为. 拉脊山断裂带遥感特征研究[J]. 高原地震, 2009, 21(1): 26-31.

    LI Zhimin, TIAN Qinjian, TU Hongwei. Remote Sensing Characteristics of Lajishan Fault[J]. Plateau Earthquake Research, 2009, 21(1): 26-31.

    [23] 徐化超, 王辉, 曹建玲. 青藏高原东北缘主要断裂滑动速率及其动力学意义[J]. 地震, 2018, 38(3): 13-23.

    XU Huachao, WANG Hui, CAO Jianling. Slip Rates of the Major Faults in the Northeastern Tibetan Plateau and Their Geodynamic Implications[J]. Earthquake, 2018, 38(3): 13-23.

    [24] 周琳, 王庆良, 李长军, 等. 基于GPS和水准资料的拉脊山断裂带西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059.

    ZHOU Lin, WANG Qingliang, LI Zhangjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059.

    [25] 郑文俊, 袁道阳, 何文贵, 等. 甘肃东南地区构造活动与2013年岷县⁃漳县Ms 6.6级地震孕震机制[J]. 地球物理学报, 2013, 56(12): 4058-4071.

    ZHENG Wenjun, YUAN Daoyang, HE Wengui, et al. Geometric Pattern and Active Tectonics in Southeastern Gansu Province: Discussion on Seismogenic Mechanism of the Minxian-Zhangxian Ms 6.6 Earthquake on July 22, 2013[J]. Chinese Journal of Geophysics, 2013, 56(12): 4058-4071.

    [26] 应急管理部发布甘肃积石山6.2级地震烈度图[EB/OL]. (2023-12-22) http://mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml.

    The Ministry of Emergency Management has Issued a 6.2 Magnitude Earthquake Intensity Report for the Jishishan earthquake in Gansu Province [EB/OL] (2023-12-22)http://mem.gov.cn/xw/yjglbgzdt/202312/t20231222_472849.shtml.

    [27]

    GENG J H, YANG S F, GUO J. Assessing IGS GPS/Galileo/BDS-2/BDS-3 Phase Bias Products with PRIDE PPP-AR[J]. Satellite Navigation, 2021, 2(1): 1-15.

    [28] 孙和平, 张苗苗, 徐建桥, 等. 基于集合经验模态分解法的重力极潮提取与研究[J]. 地球物理学报, 2018, 61(2): 521-530.

    SUN Heping, ZHANG Miaomiao, XU Jianqiao, et al. Etraction and Study of the Gravity Pole Tide Using EEMD[J]. Chinese Journal of Geophysics, 2018, 61(2): 521-530.

    [29] 余丹, 刘春国, 王晓, 等. 集合经验模态分解(EEMD)在地下水位数据处理中的应用初探[J]. 中国地震, 2019, 35(2): 337-346.

    YU Dan, LIU Chunguo, WANG Xiao, et al. Application of Ensemble Empirical Mode Decomposition(EEMD) in Underground Fluid Data Processing[J]. Earthquake Research in China, 2019, 35(2): 337-346.

    [30]

    TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, Rrague, Czech Republic, 2011.

    [31] 梁阿全, 高双玲. CEEMDAN和小波包方法在地震信号降噪中的应用[J]. 地震地磁观测与研究, 2023, 44(5): 29-36.

    LIANG Aquan, GAO Shuangling. Application of CEEMDAN and Wavelet Packet Analysis in Noise Reduction of Seismic Signals[J]. Seismological and Geomagnetic Observation and Research, 2023, 44(5): 29-36.

    [32] 徐华明, 孟飞飞, 俞春燕. 边坡GNSS变形监测数据去噪方法研究[J]. 测绘技术装备, 2023, 25(3): 31-36.

    XU Huaming, MENG Feifei, YU Chunyan. Denoising Method for Slope GNSS Deformation Monitoring Data[J]. Geomatics Technology and Equipment, 2023, 25(3): 31-36.

    [33] 马晓燕, 王文波. 联合同步挤压小波变换和多尺度排列熵的局部放电类型识别[J]. 计算机测量与控制, 2020, 28(2): 131-135.

    MA Xiaoyan, WANG Wenbo. Partial Discharge Recognition Based on Synchrosqueezing Wavelet Transform and Multi-scale Permutation Entropy[J]. Computer Measurement & Control, 2020, 28(2): 131-135.

图(5)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-07
  • 网络出版日期:  2024-01-14
  • 刊出日期:  2025-02-04

目录

    /

    返回文章
    返回