InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造

杨九元, 温扬茂, 许才军

杨九元, 温扬茂, 许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
引用本文: 杨九元, 温扬茂, 许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报 ( 信息科学版), 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
Citation: YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501

InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造

基金项目: 

国家自然科学基金 42374003

国家自然科学基金 42304007

中央高校基本科研业务费专项资金 2042023kf1035

河南省科技攻关项目 232102320068

详细信息
    作者简介:

    杨九元,博士,讲师,主要从事大地测量反演与构造形变研究。jyyang@whu.edu.cn

    通讯作者:

    温扬茂,博士,教授。ymwen@sgg.whu.edu.cn

Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations

  • 摘要:

    2023-12-18,中国甘肃省临夏回族自治州积石山县发生了Ms 6.2地震。作为该区域自地震观测记录以来发生的最大地震,此次事件为深入理解区域发震构造及破裂行为提供了宝贵的机会。利用哨兵1A卫星的合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)数据提取了此次地震的同震地表形变,并调查了该地震的发震断层结构。大地测量反演结果显示:西南倾和东北倾发震断层模型均能较好地拟合同震InSAR观测数据。通过对余震序列、区域断层构造特性和同震干涉图的综合分析,认为此次地震破裂在东北倾的发震断层上,可能为拉脊山南缘断裂的一个隐伏分支断层。同震库仑应力变化表明,拉脊山北缘断裂东分支断层中段、拉脊山南缘断裂东分支断层南段和西秦岭北缘断裂西段具有较高的地震危险性。

    Abstract:
    Objectives 

    On December 18, 2023, an Ms 6.2 earthquake struck the Jishishan County, Gansu Province, China. As the largest earthquake to hit this region since seismic record, the 2023 Jishishan earthquake provides an opportunity to improve our understanding of the seismogenic structure and rupture behavior of the regional active fault.

    Methods 

    We utilize Sentinel-1A interferometric synthetic aperture radar (InSAR) data to extract the coseismic surface deformation associated with this earthquake and investigate the seismogenic fault structure.

    Results and Conclusions 

    Geodetic inversion result shows that both the SW-dipping and NE-dipping fault models can fit the coseismic InSAR observations better. By a joint analysis of the aftershocks, regional fault kinematics and coseismic interferograms, we infer that the 2023 Jishishan earthquake ruptured the NE-dipping seismogenic fault, which may be a buried branch fault belonging to the south Laji Mountain fault. Coseismic Coulomb stress changes indicate a high seismic risk at the middle segment of the eastern branch fault of the north Laji Mountain fault, the southern segment of the eastern branch fault of the south Laji Mountain fault and the western segment of the northern margin of the western Qinling fault.

  • 感谢欧洲航天局提供的哨兵1A数据(https://asf.alaska.edu/)。
    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20230501
  • 图  1   青藏高原及其东北缘和2023年积石山地震附近区域构造背景

    注:红色透明区域代表局部构造背景图;MFT:喜马拉雅主前缘逆冲带;ATF:阿尔金断裂;QHFS:祁连海原断裂系统;KF:东昆仑断裂;RYSF:日月山断裂;ELSF:鄂拉山断裂;HYF:海原断裂;XLNF:西秦岭北缘断裂;LJNF:拉脊山北缘断裂;LJSF:拉脊山南缘断裂;GDF:贵德断裂;Jishishan:积石山县;紫色小圆为来自中国地震台网中心震后4天的余震序列;黑、浅蓝和粉色沙滩球分别为来自全球质心矩张量的历史逆冲、正断和走滑地震的震源机制解。

    Figure  1.   Tectonic Setting of the Tibetan Plateau and Its Northeast Margin, and the 2023 Jishishan Earthquake

    图  2   2023年积石山地震升、降轨同震干涉图及其对应的降采样图

    注:图中黑色长箭头代表卫星飞行方向,黑色短箭头代表雷达成像方向;红沙滩球代表来自USGS的2023年积石山地震震源机制解。

    Figure  2.   Ascending and Descending Coseismic Interferograms and the Corresponding Downsampled Data

    图  3   2023年积石山地震同震滑动分布模型及地下断层结构剖面图

    注:图(b)和(e)中的白色箭头表示断层上盘相对于断层下盘的运动方向;图(c)和(f)中细红线为反演得到的发震断层剖面,叠加在细红线上的粗红线代表主要的滑动区域。

    Figure  3.   Coseismic Distribution Models of the 2023 Jishishan Earthquake and the Profile Map of the Subsurface Fault Structure

    图  4   同震观测、模拟图及残差图

    Figure  4.   Coseismic Observation, Coseismic Modeling and Residuals

    图  5   2023年积石山地震引起的周边断层同震库仑应力变化

    Figure  5.   Coseismic Coulomb Stress Changes Around the Adjacent Faults Induced by the 2023 Jishishan Earthquake

    表  1   2023年Ms 6.2积石山地震震源参数

    Table  1   Source Parameters of the 2023 Ms 6.2 Jishishan Earthquake

    研究来源经度/(°)纬度/(°)走向/(°)倾角/(°)滑动角/(°)深度/km震级
    USGS102.82735.743333/15662/2888/9310Mw 5.9
    GCMT102.8135.83303/16452/4662/12218.9Mw 6.1
    CENC102.7935.7010Ms 6.2
    模型1102.92-0.24 km+0.24 km35.82-0.26 km+0.26 km148.9-1.5+1.533.6-1.5+1.5116.4-3.1+3.18.2-0.2+0.2Mw 6.1
    模型2102.73-0.27 km+0.27 km35.71-0.27 km+0.27 km311.0-1.7+1.753.8-2.4+2.479.6-3.8+3.86.6-0.3+0.3Mw 6.1
    注:均匀滑动模型中深度指破裂断层面上边界中点至地表的深度;模型1代表西南倾断层模型,模型2代表东北倾断层模型。
    下载: 导出CSV

    表  2   生成同震干涉图的合成孔径雷达数据信息

    Table  2   Information of Synthetic Aperture Radar Data Applied for Coseismic Interferograms

    卫星轨道参考日期重复日期垂直基线/m入射角/(°)方位角/(°)
    哨兵1A升轨1282023-10-272023-12-266441.5-9.9
    哨兵1A降轨1352023-12-142023-12-26-11739.4-169.9
    下载: 导出CSV
  • [1]

    YUAN D Y, GE W P, CHEN Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies[J]. Tectonics, 2013, 32(5): 1358-1370.

    [2]

    ZHENG W J, ZHANG P Z, HE W G, et al. Transformation of Displacement Between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults[J]. Tectonophysics, 2013, 584: 267-280.

    [3] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 155-165.

    YUAN Daoyang, ZHANG Peizhen, LEI Zhong-sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 155-165.

    [4] 王运生,赵波,吉锋,等. 2023年甘肃积石山Ms 6.2地震震害异常的启示[J].成都理工大学学报(自然科学版),2024, 50(1):1-8.

    WANG Yunsheng, ZHAO Bo, JI Feng, et al. Preliminary Insights into Hazards Triggered by the 2023 Ms 6.2 Jishishan Earthquake, Gansu Province [J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2024, 50(1):1-8.

    [5] 陈博,宋闯,陈毅,等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake [J]. Geomatics and Information Science of Wuhan University, 2024,DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    [6] 黄观文,景策,李东旭,等.甘肃积石山Ms 6.2地震对滑坡易发区的变形影响分析[J]. 武汉大学学报(信息科学版),2024,DOI:10.13203/J.whugis20230490. doi: 10.13203/J.whugis20230490

    HUANG Guanwen, JING Ce, LI Dongxu, et al. Deformation Analysis of the Ms 6.2 Jishishan Earthquake on the Landslide Hazard Areas [J]. Geomatics and Information Science of Wuhan University,2024, DOI:10.13203/J.whugis20230490. doi: 10.13203/J.whugis20230490

    [7]

    WERNER C, WEGMÜLLER U, STROZZI T, et al. GAMMA SAR and Interferometric Processing Software[C]//The ERS-Envisat Symposium, Gothenburg, Sweden, 2000.

    [8]

    GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.

    [9]

    GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping[J]. Radio Science, 1988, 23(4): 713-720.

    [10]

    CAVALIÉ O, DOIN M P, LASSERRE C, et al. Ground Motion Measurement in the Lake Mead Area, Nevada, by Differential Synthetic Aperture Radar Interferometry Time Series Analysis: Probing the Lithosphere Rheological Structure[J]. Journal of Geophysical Research (Solid Earth), 2007, 112(B3): B03403.

    [11]

    LOHMAN R B, SIMONS M. Some Thoughts on the Use of InSAR Data to Constrain Models of Surface Deformation: Noise Structure and Data Down-sampling[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(1): Q01007.

    [12]

    OKADA Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.

    [13]

    STECK L K, PHILLIPS W S, MACKEY K, et al. Seismic Tomography of Crustal P and S Across Eurasia[J]. Geophysical Journal International, 2009, 177(1): 81-92.

    [14]

    FENG W P, LI Z H, ELLIOTT J R, et al. The 2011 Mw 6.8 Burma Earthquake: Fault Constraints Provided by Multiple SAR Techniques[J]. Geophy⁃sical Journal International, 2013, 195(1): 650-660.

    [15]

    PARSONS B, WRIGHT T, ROWE P, et al. The 1994 Sefidabeh (Eastern Iran) Earthquakes Revisited: New Evidence from Satellite Radar Interferometry and Carbonate Dating About the Growth of an Active Fold Above a Blind Thrust Fault[J]. Geophysical Journal International, 2006, 164(1): 202-217.

    [16]

    ELLIOTT J R, WALTERS R J, ENGLAND P C, et al. Extension on the Tibetan Plateau: Recent Normal Faulting Measured by InSAR and Body Wave Seismology[J]. Geophysical Journal International, 2010, 183(2): 503-535.

    [17] 王勤彩, 罗钧, 陈翰林, 等. 2023年12月18日甘肃积石山6.2级地震震源机制解[J]. 地震, 2024, 44(1): 185-188.

    WANG Qincai, LUO Jun, CHEN Hanlin, et al. Focal Mechanism for the December 18, 2023, Jishi-shan Ms 6.2 Earthquake in Gansu Province[J]. Earthquake, 2024, 44(1): 185-188.

    [18]

    SYMITHE S J, CALAIS E, HAASE J S, et al. Coseismic Slip Distribution of the 2010 M 7.0 Haiti Earthquake and Resulting Stress Changes on Regional Faults[J]. Bulletin of the Seismological Society of America, 2013, 103(4): 2326-2343.

    [19] 汪建军, 许才军, 申文斌. 2010年Mw 6.9玉树地震同震库仑应力变化研究[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1207-1211.

    WANG Jianjun, XU Caijun, SHEN Wenbin. The Coseismic Coulomb Stress Changes Induced by the 2010 Mw 6.9 Yushu Earthquake, China and Its Implication to Earthquake Hazards[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1207-1211.

    [20] 许才军, 汪建军, 熊维. 地震应力触发回顾与展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2085-2092.

    XU Caijun, WANG Jianjun, XIONG Wei. Retrospection and Perspective for Earthquake Stress Triggering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2085-2092.

    [21]

    WANG R J, LORENZO-MARTÍN F, ROTH F. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory[J]. Computers & Geoscien⁃ces, 2006, 32(4): 527-541.

    [22]

    FREED A M. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer[J]. Annual Review of Earth and Planetary Sciences, 2005, 33(1): 335-367.

    [23]

    ZIV A, RUBIN A M. Static Stress Transfer and Earthquake Triggering: No Lower Threshold in Sight?[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13631-13642.

图(5)  /  表(2)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  52
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-01
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2025-02-04

目录

    /

    返回文章
    返回