An Optimal Allocation Method for ARAIM Risk Considering DOP
-
摘要: 针对高级接收机自主完好性监测(advanced receiver autonomous integrity monitoring, ARAIM) 算 法将完好性和连续性风险平均分配,导致保护级(protection level, PL) 计算保守的问题, 本文系统分析影 响保护级计算的因素,提出一种顾及精度衰减因子(dilution of precision, DOP)的 ARAIM 风险优化分配 方法,并采用 MGEX(multi-GNSS experiment)测站、车载及航空实验三种数据验证该方法的有效性。 结果表明: 所提方法可实现保护级对定位误差更为紧致的包络, 且优于半区间搜索法。相较风险平均方法, 三类实验中 BDS 保护级的改善率分别为 7.5%、 11.6%和 8.8%。 此外, 保护级的改善效果与卫星观测几何 结构密切相关, 不同系统和区域内的优化效果存在差异。 对于 BDS 而言,非亚太地区对应改善幅度优于 亚太地区, 两区域内的改善幅度分别为 3.6 m 和 1.0 m; 在亚太地区, BDS 和 BDS/GPS 组合的改善幅度分 别为 1.0 m 和 0.6 m,单BDS提升效果更为显著。Abstract: Objectives: The advanced receiver autonomous integrity monitoring (ARAIM) algorithm equally allocates the integrity and continuity risk, which leads to a conservative protection level (PL) calculation. Methods: This paper systematically analyses the factors affecting the protection level calculation, proposes an optimal risk allocation method for ARAIM considering the dilution of precision (DOP), and verifies the effectiveness of the method by using three kinds of data from the MGEX (multi-GNSS experiment) station, vehicle and airborne experiments. Results: The results show that the proposed method can realize a tighter envelope of the protection level to the position error, and its performance is better than that of the half-interval search method. Compared to the riskaveraged method, the PL improvement rates of BDS in the three types of experiments are 7.5%, 11.6% and 8.8%, respectively. In addition, the PL optimization effect is closely related to the satellite observation geometry, and the improvement effect varies within different systems and regions. Conclusions: For BDS, the improvement in the non-Asia-Pacific region is better than that in the AsiaPacific region, with 3.6 m and 1.0 m respectively in the two regions. In the Asia-Pacific region, the optimization effect in BDS and BDS/GPS is 1.0 m and 0.6 m, respectively, with the single BDS enhancement being more significant.
-
-
[1] 李博峰, 苗维凯, 陈广鄂. 多频多模GNSS高精度定位关键技术与挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1769-1783. [2] 李子申, 王宁波, 李亮, 等. 北斗高精度高可信PPP-RTK服务基本框架[J]. 导航定位与授时, 2023, 10(02): 7-15. [3] 苏先礼. GNSS完好性监测体系及辅助性能增强技术研究[D]. 上海交通大学, 2013. [4] 王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(08): 128-138. [5] WG-C. ARAIM Technical Subgroup Milestone 3 Report [R]: ARAIM Technical Subgroup, 2016.
[6] Hexagon. Quantifying integrity [Z]. Velocity. 2019: 16-22
[7] Mattis J N, Chao E L, Duke E C. 2017 Federal Radionavigation Plan [R]: United States. Dept. of Defense, 2017.
[8] Wang S, Zhan X, Zhai Y, et al. Ensuring high navigation integrity for urban air mobility using tightly coupled GNSS/INS system [J]. J Aeronaut Astronaut Aviat, 2020, 52(4): 429-442.
[9] 赵昂, 杨元喜, 许扬胤, 等. GNSS单系统及多系统组合完好性分析[J]. 武汉大学学报(信息科学版), 2020, 45(01): 72-80. [10] 田云青, 王利, 舒宝, 等. 北斗系统ARAIM可用性评估[J]. 测绘学报, 2021, 50(07): 879-890. [11] El-Mowafy A, Yang C. Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using real data [J]. Advances in Space Research, 2016, 57(2): 659-670.
[12] Blanch J, Walter T, Enge P. RAIM with optimal integrity and continuity allocations under multiple failures [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1235-1247.
[13] Blanch J, Walter T, Enge P. Optimal positioning for advanced RAIM [J]. Navigation: Journal of the Institute of Navigation, 2013, 60(4): 279-289.
[14] 王尔申, 孙薪蕙, 曲萍萍, 等. 基于动态粒子群算法的ARAIM可用性优化方法[J]. 测绘学报, 2024, 53(1): 137-145. [15] 韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761. [16] Li Y, Zhang Z, He X, et al. Realistic stochastic modeling considering the PDOP and its application in real-time GNSS point positioning under challenging environments [J]. Measurement, 2022, 197: 111342.
[17] Blanch J, Walker T, Enge P, et al. Baseline advanced RAIM user algorithm and possible improvements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 713-732.
[18] Blanch J, Walter T, Enge P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation [C]. Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012): 2012: 2828-2849.
[19] 吴云. 最优估计与假设检验理论及其在GNSS中的应用[M]. 北京: 科学出版社, 2015. [20] 李彬, 吴云, 李征航. GNSS接收机自主完备性监测高级算法的有效性验证[J]. 武汉大学学报(信息科学版), 2015, 40(6): 800-804. [21] Li L, Wang H, Jia C, et al. Integrity and continuity allocation for the RAIM with multiple constellations [J]. GPS Solutions, 2017, 21: 1503-1513.
[22] 牛飞, 陈金平, 高为广, 等. 非正态分布假设下的完好性阈值计算与分析[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1429-1433. [23] Qi H, Wang X, Cui X, et al. ARAIM based on fault detector reuse for reducing computational load [J]. GPS Solutions, 2023, 27(2): 78.
[24] Teng Y, Wang J. New characteristics of geometric dilution of precision (GDOP) for multi-GNSS constellations [J]. The Journal of Navigation, 2014, 67(6): 1018-1028.
计量
- 文章访问数: 118
- HTML全文浏览量: 19
- PDF下载量: 22