基于多源数据的武汉都市发展区城乡高温脆弱性评估对比

方云皓, 张为, 袁娜娜, 丁伟

方云皓, 张为, 袁娜娜, 丁伟. 基于多源数据的武汉都市发展区城乡高温脆弱性评估对比[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230450
引用本文: 方云皓, 张为, 袁娜娜, 丁伟. 基于多源数据的武汉都市发展区城乡高温脆弱性评估对比[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230450
FANG Yunhao, ZHANG Wei, YUAN Nana, DING Wei. Comparative of Urban and Rural High Temperature Vulnerability Assessment in Wuhan Metropolis Based on Multi-source Data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230450
Citation: FANG Yunhao, ZHANG Wei, YUAN Nana, DING Wei. Comparative of Urban and Rural High Temperature Vulnerability Assessment in Wuhan Metropolis Based on Multi-source Data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230450

基于多源数据的武汉都市发展区城乡高温脆弱性评估对比

基金项目: 

中央高校基本科研业务费资助(2022JYCXJJ065)。

详细信息
    作者简介:

    方云皓,博士,主要研究方向为城市风热环境。1198321182@qq.com

Comparative of Urban and Rural High Temperature Vulnerability Assessment in Wuhan Metropolis Based on Multi-source Data

  • 摘要: 在全球变暖及城乡融合发展的双重背景下,高温对城镇与乡村居民健康及社会经济的消极影响愈演愈烈。科学评估城乡高温脆弱性并对比其差异,有利于为城乡地区的气候适应性策略提供差异性指引。本研究在城乡差异视角下,以武汉都市发展区为例,整合多源数据测度城乡社区高温暴露度、敏感性、适应性因子,评估城乡社区高温脆弱性空间分布与集聚特征差异,识别并比较不同高温致脆因子类型,以此提出针对城乡社区的差异性防范策略。结果表明:①城镇与乡村社区的高温脆弱性在空间上呈现差异性分布格局,城镇社区表征为由内向外逐渐减弱的“核心外围”结构,乡村社区表征为整体低值、局部高值的“多极”结构。相对乡村而言,城镇较高、高等级高温脆弱性社区数量更多、分布更广、覆盖范围更大,由此面临的高温脆弱性问题也更严峻; ②城镇与乡村社区的Moran's I指数分别为0.693、0.471,表明城镇与乡村社区的高温脆弱性均具有显著的空间集聚性,且城镇高温脆弱性的空间集聚效应较乡村社区更强。此外,由于集聚效应的存在乡村社区面临的高温脆弱性挑战不可忽视; ③引发城镇与乡村社区高温脆弱性的主导因子存在差异。城镇社区的高温脆弱性主要由高温暴露导致,乡村社区的高温脆弱性主要归结于其适应能力不足。在应对高温脆弱性时,城镇与乡村社区采取的防范策略应当有所侧重。
    Abstract: Objectives: Within the context of global warming and urban-rural integration, the adverse effects of elevated temperatures on the health and socio-economic well-being of urban and rural populations are progressively escalating. A scientific assessment of high-temperature vulnerability in both urban and rural areas, along with a comparison of their distinctions, can facilitate the development of tailored guidance for climate adaptation strategies. Methods: Firstly, using Wuhan Metropolis as a case study, this research integrated multi-source data to gauge the exposure, sensitivity, and adaptation factors related to high temperatures in urban and rural communities. Secondly, we assessed the differences in the spatial patterns and clustering characteristics of high temperature vulnerability between urban and rural communities. Finally, various types of heat-induced vulnerability factors were identified, and heat prevention strategies were proposed for urban and rural communities, respectively. Results: ① The hightemperature vulnerability of urban and rural communities exhibits a differentiated spatial distribution pattern. Urban areas display a "core-periphery" structure characterized by a gradual decrease in vulnerability from the center outward. In contrast, rural areas exhibit a "multi-pole" structure with generally low vulnerability values and localized high values. In urban areas, communities with higher and sub-higher levels of high-temperature vulnerability are more numerous, widely distributed, and have greater coverage compared to their rural counterparts. Consequently, urban areas face more severe challenges related to high-temperature vulnerability than rural areas. ② The Moran's I indices for urban and rural communities are 0.693 and 0.471, respectively, signifying a noteworthy spatial clustering of high-temperature vulnerability in both urban and rural contexts. Moreover, the spatial clustering effect of high-temperature vulnerability in urban communities surpasses that observed in rural areas. Additionally, the challenge of high-temperature vulnerability faced by rural communities cannot be disregarded, given the presence of the agglomeration effect. ③ There exists heterogeneity in the primary factors contributing to high-temperature vulnerability between urban and rural communities. In urban settings, this vulnerability predominantly stems from heightened temperature exposure, while in rural areas, it is chiefly attributed to a lack of adaptive capacity. Conclusions: These findings imply that distinct preventive strategies should be employed by urban and rural communities to address high-temperature vulnerability effectively.
  • [1]

    He C, Zhou L G, Yao Y R, et al. Estimating spatial effects of anthropogenic heat emissions upon the urban thermal environment in an urban agglomeration area in East China[J]. Sustainable Cities and Society, 2020,57:102046.

    [2]

    Lai D Y, Liu W Y, Gan T T, et al. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces[J]. Science of the Total Environment, 2019,661(15):337-353.

    [3]

    Ballester J, Quijal-Zamorano M, Méndez Turrubiates R F, et al. Heat-related mortality in Europe during the summer of 2022[J]. Nature Medicine, 2023,29(7):1857-1866.

    [4]

    IPCC. 2001. Climate change 2001:the scientific basis. Working group II contribution to the third assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK:Cambridge University Press.

    [5] Xie P, Wang Y L, Peng J, et al. Health related urban heat wave vulnerability assessment:Research progress and framework[J]. Progress in Geography, 2015,34(2):165-174.(谢盼,王仰麟,彭建,等.基于居民健康的城市高温热浪灾害脆弱性评价——研究进展与框架[J]. 地理科学进展,2015,34(2):165-174.)
    [6]

    Kotharkar R, Ghosh A. Progress in extreme heat management and warning systems:A systematic review of heat-health action plans (1995-2020)[J]. Sustainable Cities and Society, 2022,76:103487.

    [7]

    Liu J W, Varghese B M, Hansen A, et al. Heat exposure and cardiovascular health outcomes:A systematic review and meta-analysis[J]. The Lancet Planetary Health, 2022,6(6):e484-e495.

    [8] Xie P, Wang Y L, Liu Y X, et al. Incorporating social vulnerability to assess population health risk due to heat stress in China[J]. Acta Geographica Sinica, 2015,70(7):1041-1051.(谢盼,王仰麟,刘焱序,等.基于社会脆弱性的中国高温灾害人群健康风险评价[J].地理学 报,2015,70(7):1041-1051.)
    [9] Xue Q, Xie M M, Guo Q, et al. Research progress on urban heat wave vulnerability assessment:A geographical perspective[J]. Progress in Geography, 2020,39(4):685-694.(薛倩,谢苗苗,郭强,等.地理学视角下城市高温热浪脆弱性评估研究进展[J].地理科学进 展,2020,39(4):685-694.)
    [10] Yang H L, Xu Y L, Tao S C, et al. Vulnerability to heat waves and adaptation:A summary[J]. Science&Technology Review, 2010,28(19):98-102.(杨红龙,许吟隆,陶生才,等.高温热浪脆弱性与适应性研究进展[J].科技导报,2010,28(19):98-102.)
    [11] Huang X J, Wang B, Liu M M, et al. Characteristics of urban extreme heat and assessment of social vulnerability in China[J]. Geographical Research, 2020,39(7):1534-1547.(黄晓军,王博,刘萌萌,等.中国城市高温特征及社会脆弱性评价[J].地理研 究,2020,39(7):1534-1547.)
    [12] Huang X J, Qi M Y, Zhao K X, et al. Assessment of population vulnerability to heat stress and spatial differentiation in Xi'an[J]. Geographical Research, 2021,40(6):1684-1700.(黄晓军,祁明月,赵凯旭,等.高温影响下西安市人口脆弱性评估及其空间分异[J].地 理研究,2021,40(6):1684-1700.)
    [13] Wu X L, Liu Q S, Liu G H, et al. Risk assessment of heat waves:A review[J]. Journal of Geo-information Science, 2019,21(7):1029-1039.(武夕琳,刘庆生,刘高焕,等.高温热浪风险评估研究综述[J].地球信息科学学报,2019,21(7):1029-1039.)
    [14]

    Blaikie P, Cannon T, Davis I, et al. At risk:Natural hazards, people's vulnerability and disasters[M]. London, UK:Routledge, 1994.

    [15]

    Xu Z, Crooks J L, Black D, et al. Heatwave and infants'hospital admissions under different heatwave definitions[J]. Environmental Pollution, 2017,229:525-530.

    [16] Chen K, Tang Y. Identification of urban areas vulnerable to heat waves and coping strategies:A case study of Beijing Central City[J]. City Planning Review, 2019,43(12):37-44+77.(陈恺,唐燕.城市高温热浪脆弱性空间识别与规划策略应对——以北京中心城区为例[J].城市规划,2019,43(12):37-44+77.)
    [17] Shui W, Chen Z C, Deng J M, et al. Evaluation of urban high temperature vulnerability of coupling adaptability in Fuzhou, China[J]. Acta Geographica Sinica, 2017,72(5):830-849.(税伟,陈志淳,邓捷铭,等.耦合适应力的福州市高温脆弱性评估[J].地理学 报,2017,72(5):830-849.)
    [18] Dai X, Liu Q S, Wu X L, et al. The risk of heat wave along the Jakarta-Bandung high-speed railway in Indonesia[J]. Tropical Geography, 2021,41(1):147-158.(代欣,刘庆生,武夕琳,等.印尼雅万高铁沿线区域高温热浪风险[J].热带地理,2021,41(1):147-158.)
    [19] Chen J Y, Tao H, Zhai J Q, et al. Risk assessment of extreme high temperature events over the China-Pakistan Economic Corridor[J]. Journal of Natural Disasters, 2022,31(4):65-74.(陈金雨,陶辉,翟建青,等.中巴经济走廊极端高温事件风险评估[J].自然灾害学 报,2022,31(4):65-74.)
    [20] Luo X L, Du Y D, Zheng J. Risk regionalization of human health caused by high temperature&heat wave in Guangdong Province[J]. Climate Change Research, 2016,12(2):139-146.(罗晓玲,杜尧东,郑璟.广东高温热浪致人体健康风险区划[J].气候变化研究进 展,2016,12(2):139-146.)
    [21] Fu H C, Deng F, Yang H, et al. Assessing heat wave risk of urban agglomeration in the middle-lower Yangtze River based on remote sensing[J]. Resources and Environment in the Yangtze Basin, 2020,29(5):1174-1182.(付含聪,邓帆,杨欢,等.基于遥感的长江中下游城 市群高温热浪风险评估[J].长江流域资源与环境,2020,29(5):1174-1182.)
    [22]

    Gabriel K M A, Endlicher W R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany[J]. Environmental Pollution, 2011,159(8-9):2044-2050.

    [23]

    López-Bueno J A, Navas-Martín M A, Linares C, et al. Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid[J]. Environmental Research, 2021,195:110892.

    [24] Huang Y P, Feng Y, Zhang Y, et al. A research on spatial clusters in Wuhan Metropolitan Area:Growth process, mechanism and developmental characters[J]. Urban Planning Forum, 2011,5:1-10.(黄亚平,冯艳,张毅,等.武汉都市发展区簇群式空间成长过程、机 理及规律研究[J].城市规划学刊,2011,5:1-10.)
    [25] He M, Xu Y M, Li N, et al. Assessing heat wave risk in Beijing by remote sensing[J]. Ecology and Environmental Sciences, 2017,26(4):635-642.(何苗,徐永明,李宁,等.基于遥感的北京城市高温热浪风险评估[J].生态环境学报,2017,26(4):635-642.)
    [26] Hu D Y, Qiao K, Wang X L, et al. Comparison of three single-window algorithms for retrieving land-surface temperature with Landsat 8TIRS data[J]. Geomatics and Information Science of Wuhan University, 2017,42(7):869-876.(胡德勇,乔琨,王兴玲,等.利用单窗算法 反演Landsat 8 TIRS数据地表温度[J].武汉大学学报(信息科学版),2017,42(7):869-876.)
    [27]

    Li J, Xu X, Yang J, et al. Ambient high temperature and mortality in Jinan, China:A study of heat thresholds and vulnerable populations[J]. Environmental Research, 2017,156:657-664.

    [28] Lu Y, Yang J S, Huang X, et al. Effects of urban morphology on land surface temperature in local climate zones[J]. Geomatics and Information Science of Wuhan University, 2021,46(9):1412-1422.(卢阳,杨建思,黄昕,等.面向局部气候带的城市形态对地表温度的影 响[J].武汉大学学报(信息科学版),2021,46(9):1412-1422.)
    [29] Wang D Z, Zhang Q, Zhu X D, et al. Multisource data evaluation of heat risk in Shanghai[J]. Journal of Beijing Normal University (Natural Science), 2021,57(5):613-623.(王丹舟,张强,朱秀迪,等.基于多源数据的上海市高温热浪风险评估[J].北京师范大学学报(自 然科学版),2021,57(5):613-623.)
    [30] Yang L C, Yang H S, Fan Q X, et al. Vulnerability assessment and planning response to high-temperature wave in large cities:The case of Chengdu[J]. Planners, 2023,39(2):38-45.(杨林川,杨皓森,范强雪,等.大城市高温热浪脆弱性评价及规划应对研究——以成都市 为例[J].规划师,2023,39(2):38-45.)
    [31] Zheng X M, Wang Y, Wu X Y, et al. Comparison of heat wave vulnerability between coastal and inland cities of Fujian Province in the past 20 years[J]. Progress in Geography, 2016,35(10):1197-1205.(郑雪梅,王怡,吴小影,等.近20年福建省沿海与内陆城市高温热浪 脆弱性比较[J].地理科学进展,2016,35(10):1197-1205.)
    [32]

    Ebert U, Welsch H. Meaningful environmental indices:A social choice approach[J]. Journal of Environmental Economics and Management, 2004,47(2):270-283.

计量
  • 文章访问数:  130
  • HTML全文浏览量:  23
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 网络出版日期:  2024-04-08

目录

    /

    返回文章
    返回