基于熵值法轨迹聚类多特征参数融合的GNSS-IR土壤湿度反演方法

魏浩翰, 张强, 沈飞

魏浩翰, 张强, 沈飞. 基于熵值法轨迹聚类多特征参数融合的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230419
引用本文: 魏浩翰, 张强, 沈飞. 基于熵值法轨迹聚类多特征参数融合的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230419
WEI Haohan, ZHANG Qiang, SHEN Fei. GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230419
Citation: WEI Haohan, ZHANG Qiang, SHEN Fei. GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230419

基于熵值法轨迹聚类多特征参数融合的GNSS-IR土壤湿度反演方法

基金项目: 

江苏省农业科技自主创新基金(CX(21)3068);国家自然科学基金(42077003)。

详细信息
    作者简介:

    魏浩翰,副教授,主要从事GNSS反射信号遥感、环境监测研究。weihaohan@njfu.edu.cn

    通讯作者:

    魏浩翰,副教授,主要从事GNSS反射信号遥感、环境监测研究。weihaohan@njfu.edu.cn

  • 中图分类号: V219

GNSS-IR Soil Moisture Estimation Based on Track Clustering and Multi Characteristic Parameter Fusion Using Entropy Method

  • 摘要: 全球导航卫星系统干涉反射(global navigation satellite systeminterferometric reflectometry,GNSS-IR)技术作为一种近地遥感的新兴手段,在土壤湿度监测方面凭借其低成本、高精度等优点成为近些年的研究热点。为了提高GNSS-IR技术反演土壤湿度的精度,选取位于南京市溧水区的自建GNSS测站原始观测数据作为数据源,提取GPS、BDS、GLONASS、Galileo等系统信噪比(signal-to-noise ratio,SNR)观测数据的多路径干涉相位、振幅和频率等特征参数,分析不同频段、不同轨迹的特征参数随土壤湿度的变化规律,提出一种顾及卫星轨迹差异的多特征数据融合的GNSS-IR土壤湿度反演方法。首先按照不同卫星轨道、不同频段进行轨迹聚类融合,然后采用熵值法进行土壤湿度反演,并将多系统轨迹融合反演结果与传统均权融合方法、多元线性回归方法进行比较。结果表明,SNR的相位、振幅、频率三种特征参数组合进行土壤湿度融合反演比单一相位特征参数及相位、振幅两种特征参数组合的反演结果更优;多系统轨迹融合较单系统轨迹融合反演性能普遍提升,平均相关系数相比单系统提高了4.0%,均方根误差降低了22.8%—39.9%;基于熵值法的多系统轨迹聚类融合土壤湿度反演方法较传统均权融合方法、多元线性回归方法以及赋权融合法反演RMSE分别降低34.0%、25.6%和29.5%。本文提出的方法能够提供长期、准确的土壤湿度反演结果。
    Abstract: Objectives: GNSS-IR technology, as an emerging tool for near-Earth remote sensing, has become a research hotspot in recent years in the area of soil moisture monitoring, with its low cost and high precision. Methods: In order to improve the accuracy of GNSS-IR technology in retrieving soil moisture, a self-built GNSS station located in Lishui District, Nanjing City was selected as the research data source, Firstly, feature parameters such as multipath coherent phase, amplitude, and frequency of Signal-to-Noise Ratio (SNR) observation data from GPS, BDS, GLONASS, Galileo, and other systems are extracted. Based on the analysis of the characteristics of GNSS observation SNR changes with soil moisture in different systems, different frequency bands and different orbits, a multi GNSS system feature data fusion inversion method considering satellite trajectory differences was proposed. For the observation data of multiple GNSS systems, trajectory clustering fusion is carried out according to different orbits and frequency bands. After confirming the weight using entropy method, soil moisture inversion is carried out. The results of multi-system trajectory fusion inversion are compared with traditional average weight fusion methods and multiple linear regression methods. Results: The combination of SNR's phase, amplitude, and frequency feature parameters for soil moisture fusion inversion is better than the inversion results of a single phase feature parameter and a combination of two feature parameters (phase, amplitude); Multi-system trajectory fusion generally improves the inversion performance compared to single system trajectory fusion, with an average correlation coefficient increasing by 4.0% and RMSE decreasing by 22.8% to 39.9%; The multi-system trajectory clustering fusion soil moisture inversion method based on entropy method reduces RMSE by 34.0%, 25.6% and 29.5% respectively compared to traditional average weight fusion method, multiple linear regression method and weighted fusion method. Conclusions: The proposed method can provide long-term and accurate soil moisture inversion results.
  • [1]

    Hirschi M, Seneviratne S I, Alexandrov V, et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature Geoscience, 2011, 4(1): 17-21.

    [2]

    Zeng J, Chen K-S, Bi H, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4929-4940.

    [3]

    Topp G, Davis J. Measurement of soil water content using time‐domain reflectrometry (TDR): A field evaluation[J]. Soil Science Society of America Journal, 1985, 49(1): 19-24.

    [4]

    Larson K M, Small E E, Gutmann E, et al. Using GPS multipath to measure soil moisture fluctuations: Initial results[J]. GPS solutions, 2008, 12: 173-177.

    [5]

    Larson K M, Small E E, Gutmann E D, et al. Use of GPS receivers as a soil moisture network for water cycle studies[J]. Geophysical Research Letters, 2008, 35(24).

    [6]

    Rodriguez-Alvarez N, Camps A, Vall-Llossera M, et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(1): 71-84.

    [7]

    Chew C C, Small E E, Larson K M, et al. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 537-543.

    [8]

    Roussel N, Frappart F, Ramillien G, et al. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4781-4794.

    [9] WU Jizhong, WANG Tian, WU Wei. Retrieval model for soil Moisture content using GPSinterferometric reflectometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 887-892.(吴继忠, 王天, 吴玮. 利用GPS-IR监测土壤含水量的反演模型[J]. 武汉大学学报(信息科学版), 2018, 43(6): 887-892.)
    [10] SUN Bo, LIANG Yong, HAN Mutian, et al. A method for GNSS-IR soil moisture inversion based on GPS multi-satellite and triple-frequency data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1089-1096. (孙波, 梁勇, 汉牟田, 等. 基于GPS多星三频数据融合的GNSS-IR土壤湿度反演方法[J]. 北京航空航天大学学报, 2020, 46: 1089-1096.)
    [11]

    Chen K, Cao X, Shen F, et al. An Improved Method of Soil Moisture Retrieval Using MultiFrequency SNR Data[J]. Remote Sensing, 2021, 13(18): 3725.

    [12]

    Liang Y, Lai J, Ren C, et al. GNSS-IR multisatellite combination for soil moisture retrieval based on wavelet analysis considering detection and repair of abnormal phases[J]. Measurement, 2022, 203: 111881.

    [13] HE Jiaxing, ZHENG Nanshan, DING Rui, ZHANG Kefei, CHEN Tianyue. A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1286-1297. (何佳星, 郑南山, 丁锐, 等. 粒子群优化卷积神经网络GNSS-IR土壤湿度反演方法[J]. 测绘学报, 2023, 52: 1286-1297.)
    [14] Guo Fei, Chen Weijie, Zhu Yifan, et al. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J]. Geomatics and Information Science of Wuhan University, 2022. (郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2022.)
    [15] JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New Progress and Application Prospects of Global Navigation Satellite System Reflectometry (GNSS+R). Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398. (金双根, 张勤耘, 钱晓东. (全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398.)
    [16]

    Yang T, Wan W, Chen X, et al. Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1308-1312.

    [17]

    Shen F, Sui M, Zhu Y, et al. Using BDS MEO and IGSO Satellite SNR Observations to Measure Soil Moisture Fluctuations Based on the Satellite Repeat Period[J]. Remote Sensing, 2021, 13(19): 3967.

    [18] YANG Lei, WU Qiulan, ZHANG Bo, et al. SVRM-assisted soil moisture retrieval method using reflected signal from BeiDou GEO satellites[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1134-1141. (杨磊, 吴秋兰, 张波, 等. SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J]. 北京航空航天大学学报, 2016, 42: 1134-1141.)
    [19] HAN M T, XU Z C, CHANG Q, et al. Soil moisture retrieval using Beidou GEO satellite interference signal power[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1661-1670. (汉牟田, 许志超, 常青, 等. 利用北斗GEO卫星干涉信号功率反演土壤湿度[J]. 北京航空航天大学学报, 2023, 49(7): 1661-1670.)
    [20] ZHANG Shuangcheng, WANG Tao, WANG Lixia, et al. Research on variation of soil moisture retrieval by BDS/GPS[J]. Science of Surveying and Mapping, 2021, 46(7): 7-14. (张双成, 王涛, 王丽霞, 等. BDS/GPS多卫星解译土壤湿度变化研究[J]. 测绘科学, 2021, 46(7): 7-14.)
    [21] ZHENG Nanshan,HE Jiaxing,DING Rui,et al.A GNSS-IR Multi-System Combination Soil Moisture Estimation Method Based on Track Clustering[J]. Geomatics and Information Science of Wuhan University, 2023. (郑南山, 何佳星, 丁锐, 等. 基于轨迹聚类的GNSS-IR多系统组合土壤湿度估计方法[J]. 武汉大学学报(信息科学版,2023.)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  12
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回