Efficient Line-Tile-Component Multi-Granularity Spatiotemporal Indexing Method for Digital Twin Railroad Tunnel Data
-
摘要:
长大铁路隧道工程采用多工点并行同向或反向掘进等复杂施工组织策略,导致数字孪生三维模型时空分布稀疏、时空重叠度大,已有的时空索引针对连续均匀时空分布特征,难以满足时间、里程、语义多维度高效检索需要,制约了数字孪生应用的实时虚实互馈效率。为此,提出一种适用于铁路隧道数字孪生模型的多维度高效时空索引方法,设计了时间、里程、语义多维度关联的铁路隧道三维瓦片数据结构,建立了全局最优解约束的有向包围空间纠偏机制,实现了铁路隧道线路-瓦片-构件多粒度时空索引。利用典型长大铁路隧道孪生模型数据验证了所提方法的有效性,结果表明,所提方法在时间、里程、语义多维度混合检索时间平均值为135.44 ms,与现有典型时空索引对比,提升了三维空间单一维度与时间-里程混合维度的检索效率,可有效支撑铁路隧道数字孪生三维模型高效时空检索及高性能可视化分析等应用。
Abstract:ObjectivesComplex construction organization strategies such as parallel same direction and reverse boring for long railroad tunnel projects lead to sparse spatiotemporal distribution and large spatiotemporal overlap in the digital twin three-dimensional model. The existing spatiotemporal indexes for the continuous uniform spatiotemporal distribution characteristics can not satisfy the needs of efficient retrieval of time, mileage, and semantics in multi-dimensions, and they also restrict the efficiency of the digital twin application in real-time virtual and real mutual feeds.
MethodsThis paper proposes a multi-dimensional efficient spatiotemporal indexing method applicable to the digital twin model of railroad tunnels. First, a 3D tile data structure of railroad tunnels associated with time, mileage, and semantic multi-dimensions is designed. Second, an oriented bounding box corrective mechanism constrained by the global optimal solution is established, and then a multi-granular spatiotemporal index of railroad tunnel lines-tiles-components is realized. Finally, the effectiveness of the method is verified using typical long railroad tunnel twin model data.
ResultsThe results show that the average value of the proposed method in the mixed retrieval time of time, mileage and semantic multi-dimensions is 135.44 ms, which improves the retrieval efficiency of the 3D spatial single dimension and the time-mileage mixed dimension comparing with the existing typical spatial and temporal index.
ConclusionsThe proposed method can effectively support the efficient spatial and temporal retrieval of the digital twin 3D model of railroad tunnels, and the application of high-performance visualization and analysis.
-
Keywords:
- digital twin railroad /
- railroad tunnel /
- 3D tile /
- spatiotemporal indexing /
- multi-granularity
-
-
表 1 试验数据集描述
Table 1 Description of Experimental Datasets
数据集 时间跨度 里程跨度 语义类型 模型数 离散空间数 时空关联数 规则分布数据集 2021-06-16—2023-07-20 DK296+350—DK342+935 初支、衬砌、附属设施等 16 032 0 1 不规则分布数据集 15 468 3 $ \ge $3 -
[1] Jing Q, Miao H, Yang X, et al. Research on Key Technologies of 3D Real Scene Visualization Based on Multi-Source Observation Data Fusion[C]//The 3rd International Conference on Geology, Mapping and Remote Sensing, Sydney, Austrilia, 2022.
[2] 王同军. 中国智能高速铁路体系架构研究及应用[J]. 铁道学报, 2019, 41(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201911003.htm Wang Tongjun. Research and Applications of China Intelligent High-Speed Railway Architecture[J]. Journal of the China Railway Society, 2019, 41(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201911003.htm
[3] Wu H, Zhu Q, Guo Y, et al. Multi-level Voxel Representations for Digital Twin Models of Tunnel Geological Environment[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102887. doi: 10.1016/j.jag.2022.102887
[4] 程诗奋, 彭澎, 张恒才, 等. 异质稀疏分布时空数据插值、重构与预测方法探讨[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1919-1929. doi: 10.13203/j.whugis20200488 Cheng Shifen, Peng Peng, Zhang Hengcai, et al. Review of Interpolation, Reconstruction and Prediction Methods for Heterogeneous and Sparsely Distributed Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1919-1929. doi: 10.13203/j.whugis20200488
[5] Cheng Z, Wu Y, Liu Z. Research on Significance-Based Multiscale Representation Method for Railway Spatial Data[C]//The 7th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 2022.
[6] 朱庆, 李函侃, 曾浩炜, 等. 面向数字孪生川藏铁路的实体要素分类与编码研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1319-1327. doi: 10.13203/j.whugis20200010 Zhu Qing, Li Hankan, Zeng Haowei, et al. Classification and Coding of Entity Features for Digital Twin Sichuan-Tibet Railway[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1319-1327. doi: 10.13203/j.whugis20200010
[7] Borrmann A, Kolbe T H, Donaubauer A, et al. Multi-scale Geometric-Semantic Modeling of Shield Tunnels for GIS and BIM Applications[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(4): 263-281. doi: 10.1111/mice.12090
[8] Tian R, Zhai H, Zhang W, et al. A Survey of Spatio-Temporal Big Data Indexing Methods in Distributed Environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4132-4155. doi: 10.1109/JSTARS.2022.3175657
[9] 朱庆, 冯斌, 李茂粟, 等. 面向动态关联数据的高效稀疏图索引方法[J]. 测绘学报, 2020, 49(6): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202006002.htm Zhu Qing, Feng Bin, Li Maosu, et al. An Efficient Sparse Graph Index Method for Dynamic and Associated Data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202006002.htm
[10] Doulkeridis C, Vlachou A, Pelekis N, et al. A Survey on Big Data Processing Frameworks for Mobility Analytics[J]. ACM SIGMOD Record, 2021, 50(2): 18-29. doi: 10.1145/3484622.3484626
[11] Jitkajornwanich K, Pant N, Fouladgar M, et al. A Survey on Spatial, Temporal, and Spatio-Temporal Database Research and an Original Example of Relevant Applications Using SQL Ecosystem and Deep Learning[J]. Journal of Information and Telecommunication, 2020, 4(4): 524-559. doi: 10.1080/24751839.2020.1774153
[12] 杨绪坤, 刘义勤. 铁路BIM设计系统中的大数据渲染技术研究[J]. 铁道工程学报, 2015, 32(2): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201502005.htm Yang Xukun, Liu Yiqin. Research on Big Data Rendering Technology in Railway BIM Design System[J]. Journal of Railway Engineering, 2015, 32(2): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201502005.htm
[13] 张兴华. 铁路桥梁BIM程序的设计与实现[J]. 铁路计算机应用, 2019, 28(6): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201906008.htm Zhang Xinghua. Design and Implementation of BIM Program for Railway Bridges[J]. Railway Computer Application, 2019, 28(6): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201906008.htm
[14] 于安斌, 梅文胜. 一种R树与格网结合的海量地铁隧道点云管理方法[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1553-1559. doi: 10.13203/j.whugis20170419 Yu Anbin, Mei Wensheng. An Efficient Management Method for Massive Point Cloud Data of Metro Tunnel Based on R-tree and Grid[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1553-1559. doi: 10.13203/j.whugis20170419
[15] 于安斌. 地铁隧道海量点云管理与系统设计研究[D]. 武汉: 武汉大学, 2017. Yu Anbin. Management of Massive Point Cloud Data of Metro Tunnel and Design of the System[D]. Wuhan: Wuhan University, 2017.
[16] 梅文胜, 李天骄, 于安斌. 海量地铁隧道点云数据管理与Web快速可视化方法[J]. 测绘地理信息, 2021, 46(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202102001.htm Mei Wensheng, Li Tianjiao, Yu Anbin. Massive Subway Tunnel Point Cloud Data Management and Web Fast Visualization Method[J]. Journal of Geomatics, 2021, 46(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202102001.htm
[17] 侯志通. 条带状公路运营管理空间大数据降维组织及混合存储关键技术研究[D]. 杭州: 浙江大学, 2015. Hou Zhitong. Research on Key Technologies of Dimension Reduction Storage and Hybrid Management for Striping Spatial Big Data in Highway Operation Management[D]. Hangzhou: Zhejiang University, 2015.
[18] 冯晶, 蒋胜平, 郑坤. 矿山巷道点云模型及其数据组织[J]. 测绘科学, 2014, 39(5): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201405033.htm Feng Jing, Jiang Shengping, Zheng Kun. A Point Cloud Model and Its Data Organization of Mine Tunnel[J]. Science of Surveying and Mapping, 2014, 39(5): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201405033.htm
[19] Zhang Y, Zhang A, Gao M, et al. Research on Three-Dimensional Electronic Navigation Chart Hybrid Spatial Index Structure Based on Quadtree and R-Tree[J]. ISPRS International Journal of Geo-Information, 2022, 11(5): 319.
[20] CRBIM1003-2017. 铁路工程信息模型表达标准[J]. 铁路技术创新, 2017(6): 13-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCX201706002.htm CRBIM1003-2017. Railway Engineering Information Model Expression Standard[J]. Railway Technology Innovation, 2017 (6): 13-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCX201706002.htm
[21] Gan B, Dong Q. An Improved Optimal Algorithm for Collision Detection of Hybrid Hierarchical Bounding Box[J]. Evolutionary Intelligence, 2022, 15(4): 2515-2527.
[22] Yao Z, Zhang J, Li T, et al. A Trajectory Big Data Storage Model Incorporating Partitioning and Spatio-temporal Multi-dimensional Hierarchical Organization[J]. ISPRS International Journal of Geo-Information, 2022, 11(12): 621.
[23] Leutenegger S T, Lopez M A, Edgington J. STR: A Simple and Efficient Algorithm for R-Tree Packing[C]//The 13th International Conference on Data Engineering, Birmingham, UK, 1997.
[24] 王同军. 智能高速铁路基础设施全生命周期管理框架研究[J]. 铁道学报, 2021, 43(11): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202111001.htm Wang Tongjun. Research on Life-Cycle Management Framework of Intelligent High-Speed Railway Infrasturcture[J]. Journal of the China Railway Society, 2021, 43(11): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202111001.htm
-
期刊类型引用(10)
1. 曾广泉,马韬,张孟希,戴妍,陈凯文,丁继辉,俞双恩,王中文. 基于无人机多光谱影像的不同施氮量水稻LAI反演方法研究. 江苏农业科学. 2024(20): 41-48 . 百度学术
2. 高钰琪,许桂玲,冯跃华,王晓珂,任红军,由晓璇,韩志丽,李家乐. 基于冠层高光谱植被指数的水稻产量预测模型研究. 中国稻米. 2023(05): 38-44 . 百度学术
3. 彭晓伟,张爱军,王楠,赵丽,杨晓楠. 高光谱技术在土壤及适种作物的研究进展. 遥感信息. 2022(01): 32-39 . 百度学术
4. 王晓珂,刘婷婷,许桂玲,冯跃华,彭金凤,李杰,罗强鑫,韩志丽,卢苇,PHONENASAY Somsana. 基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型. 中国稻米. 2021(03): 21-29 . 百度学术
5. 王浩淼,宋苗语,李翔,扈朝阳,鲁任翔,王翔,马会勤. 无人机高光谱遥感监测葡萄长势与缺株定位. 园艺学报. 2021(08): 1626-1634 . 百度学术
6. 刘雅婷,龚龑,段博,方圣辉,彭漪. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测. 武汉大学学报(信息科学版). 2020(02): 265-272 . 百度学术
7. 陈晓凯,李粉玲,王玉娜,史博太,侯玉昊,常庆瑞. 无人机高光谱遥感估算冬小麦叶面积指数. 农业工程学报. 2020(22): 40-49 . 百度学术
8. 落莉莉,常庆瑞,武旭梅,杨景,李粉玲,王琦. 夏玉米叶片光合色素含量高光谱估算. 干旱地区农业研究. 2019(04): 178-183 . 百度学术
9. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 . 百度学术
10. 李亚妮,鲁蕾,刘勇. 基于PROSAIL模型的水稻田缨帽三角-叶面积指数模型及其应用. 应用生态学报. 2017(12): 3976-3984 . 百度学术
其他类型引用(17)