基于天-空-车-地一体化铁路路基灾害隐患早期识别与服役状态监测

李永威, 徐林荣, 陈昀灏, 邓志兴

李永威, 徐林荣, 陈昀灏, 邓志兴. 基于天-空-车-地一体化铁路路基灾害隐患早期识别与服役状态监测[J]. 武汉大学学报 ( 信息科学版), 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404
引用本文: 李永威, 徐林荣, 陈昀灏, 邓志兴. 基于天-空-车-地一体化铁路路基灾害隐患早期识别与服役状态监测[J]. 武汉大学学报 ( 信息科学版), 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404
LI Yongwei, XU Linrong, CHEN Yunhao, DENG Zhixing. Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404
Citation: LI Yongwei, XU Linrong, CHEN Yunhao, DENG Zhixing. Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404

基于天-空-车-地一体化铁路路基灾害隐患早期识别与服役状态监测

基金项目: 

铁路基础研究联合基金 U2268213

国家自然科学基金 42172322

湖南省研究生科研创新一般项目 QL20230104

详细信息
    作者简介:

    李永威,博士生,主要从事路基与地质灾害评估、防治与预警预报研究工作。yongwei_li@163.com

    通讯作者:

    徐林荣,博士,教授。lrxu@csu.edu.cn

Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade

  • 摘要:

    气候系统变化背景下铁路路基灾害呈高发态势,表现出点多面广、隐蔽性强和突发性高等特征,且路基灾害“一点受灾,全线受阻”的巨大危害,已经使其成为铁路安全运营的“瓶颈”难题。多次铁路事故表明风险源大多不在已知灾害隐患点范围内,传统监测手段已难以满足复杂孕灾环境下的路基服役安全监测需求。鉴于此,首先总结了不同孕灾环境下路基灾害隐患特征,将路基服役状态监测定义为长期服役过程中受突发型灾害、缓变型致灾作用下可能导致路基结构损伤或功能损失等服役状态劣化的危险源及路基本体受灾程度监测,监测内容包括路基变形监测、结构健康监测、沿线地质灾害监测、几何状态测量和外部环境监测;提出了天-空-车-地多源协同路基灾害隐患早期识别与服役状态监测体系,形成了平台协同、尺度协同、参数协同、多部门协同的路基灾害协同监测内涵,初步提出多源协同路基灾害及服役状态监测方案,实现区域-工段-工点为主线的星地协同的工作模式,并在沪宁城际高速铁路路基服役状态监测中得到应用;最后对路基服役状态监测发展方向进行了展望。

    Abstract:
    Objectives 

    Because of high frequency of extreme weather, railway subgrade disaster shows a trend of increasing, great harmfulness and is hard to detect in advance. Even a small-size subgrade disaster may cause railway paralysis, which prevents the development of transportation. Many incidents illustrate that the earliest subgrade disaster always appeared in areas where no case ever reported before. It means that traditional monitoring methods are hard to detect hidden danger area. Thus, a promising method is urgent to be proposed for meeting the monitoring requirement for railway safety.

    Methods 

    First, the characteristics of subgrade disaster are summarized under different disaster-pregnant environments, and the advantages of various monitoring methods are discussed to find a collaborative applications method for early identification of subgrade disaster. The potential hazards that may cause damage to subgrade structure and the deterioration degree of subgrade are considered as the main monitoring object of subgrade service status, including subgrade deformation monitoring, structural health monitoring, geological hazard monitoring along the railway, track irregularity, and external environmental monitoring. Second, an investigative approach based on the integration of space-air-train-ground muti-source techniques is proposed to detect the geohazards and monitor the service status of railway subgrade. It means that collaborative application of different monitoring methods, cooperative analysis of different scales and resolutions data and collaboration of between various railway departments are required. Two monitoring schemes for subgrade disasters and service status of subgrade are proposed based on the integration of multi-source and multi-scale monitoring technique. Finally, the development direction of subgrade service status monitoring is discussed.

    Results and Conclusions 

    This monitoring system has been applied in the identification of subgrade service status in the Shanghai-Nanjing high speed railway, which can quickly investigate the location of the disasters and the deterioration degree of subgrade.

  • 聚类是数据挖掘的基础技术,有广泛的应用前景[1-2]。聚类算法主要分为层次聚类法、网格聚类法、分割聚类法和密度聚类法[3]。其中,分割聚类法简单、快速,广泛应用于各个领域,典型的分割聚类法是K-means算法和K-medoids算法。在实际应用中,这两种算法由于需要用户输入聚类个数,聚类结果与初始点选择有关等缺点,不能很好地满足用户的需要[4]。《Science》中提出的峰值密度聚类算法虽然解决了上述问题,但存在阈值需要人为输入的问题[5]

    本文根据数据场,提出了数据质量聚类中心的概念。数据场将物质粒子间的相互作用及场描述方法引入到抽象的数域空间,实现数据对象或者样本点间相互作用的形式化描述[6]和计算。数据场将数据所具有的固有属性定义为数据的质量,并根据实际挖掘视角的不同,表示数据不同的属性。本文中,数据质量将代表数据的密集程度,并以此确定聚类中心,该方法无需用户输入聚类个数,也无需选择初始点,更无需人为设定阈值。

    在物理场中,物体的质量是不能改变的,是物体固有的属性。同理,在数据场中,数据的质量也代表了每个数据自身的固有属性。所不同的是,在数据场中,数据并不是实际存在的物体,可以这样认为,n维数据集构成了一个n维的数据空间,数据集中每一个数据就是存在于这个n维空间中的“物体”,其各种属性都遵从于这个n维空间自身的特点。

    定义:设数据集α含有N个数据点,α ={x1, x2xn},其中xi={xi1, xi2xip},组成一个P维空间Ω,在空间Ω中的数据点xi所固有的属性τ,称之为点xi在数据集α中的数据质量。

    需要注意的是,定义中数据质量代表的是数据在数据集中的固有属性,这个固有属性会随着数据挖掘视角的不同而改变。一个数据点在数据集中可能会具有多种不同的固有属性,应当根据当前的挖掘任务赋予数据相应的属性。因此,数据场中数据质量具有集群性,即只在数据集中具有质量;空间唯一性,即相关的属性只在对应的数据集中存在;可变性,即根据需求不同代表的数据属性也不同。

    聚类算法的目的是让类内相似度最高,类间相似度最低。反映在数据集的空间分布上,就是相似度高的数据分布在同一个类簇中,不同的类簇代表了不同的类别。因此,在聚类分析中,一般取数据密集程度这一属性作为数据的质量。此时,数据场中的数据质量本质上是反映数据集中数据的密集程度,处于密集区域的数据具有较大的数据质量,处于稀疏区域的数据具有较小的数据质量。

    图 1所示的红色点标出的是数据集中质量较大的点,与所描述的数据质量概念一致,这些点都处于数据集中的密集区域。在聚类分析中,处于密集区域的点都有可能成为聚类中心。图 1中所示的数据集含有5 000个点,而质量较大的点约有1 000个,显然,只根据数据的质量不能确定数据集的聚类中心。

    图  1  具有较大数据质量的点
    Figure  1.  Points with Big Mass

    类比于物理场中的引力,聚类中心应当具有较大的质量,能够吸引其他质量较小的点在其周围形成一个类簇。同时,各个聚类中心应当相距较远,从而使聚类中心之间的作用力很小,直至可以忽略,这样,类簇与类簇间的相互关系就很弱,而类簇内的相互关系就很强,满足了最基本的聚类思想。

    因此,数据质量聚类算法使用数据质量和数据之间的距离两个属性共同确定一个聚类中心。其中,数据之间的距离属性定义为:在数据集{x1, x2xn}中,所有比xi质量大的点到xi距离的最小值;如果点xi是数据集中质量最大的点,那么其距离属性就为数据集中其他点xj(j≠i)到xi距离的最大值。

    数据距离属性的计算式为:

    $$ {{\delta }_{i}}=\left\{ \begin{align} &\underset{j:{{m}_{j}}>{{m}_{i}}}{\mathop{\min }}\, ({{d}_{ij}}), \ \ \exists \ {{m}_{i}}<{{m}_{j}} \\ &\underset{j=1, 2, \cdots , n}{\mathop{\max }}\, ({{d}_{ij}}), \ \ \nexists \ {{m}_{i}}<{{m}_{j}} \\ \end{align} \right. $$ (1)

    式中,m表示数据的质量,dij表示两点间的距离。当数据集x1, x2xn中存在比xi数据质量大的点xj,即mimj时,数据之间的距离为所有比xi质量大的点到xi距离的最小值;如果不存在比xi数据质量大的点xj,即xi是数据集中质量最大的点,那么其距离属性就为数据集中其他点xj(j≠i)到xi距离的最大值。所以点ximiδi都较大时,可以确定是聚类中心。在实际操作中,为了便于准确找到数据集中同时具有较大数据质量和较大距离属性的点,用数据集中每个数据点的质量属性作为横坐标、距离属性作为纵坐标绘制的决策图来确定聚类中心。在决策图中,同时具有较大横坐标和纵坐标数值的点会脱离其他只具有1个较大属性的点或者不具有较大属性的点,从而可以将这些脱离出来的点作为聚类中心。

    图 2所示为数据集的决策图,可以发现,只有少数几个点的两个属性都较大,这些点用红色标出,作为备选聚类中心。

    图  2  聚类中心
    Figure  2.  Clustering Centers

    数据质量聚类算法的核心是确定聚类中心,涉及数据的质量和距离两个属性。其中,距离属性计算使用欧氏距离,质量的计算采用参考文献[7]中的方法。在确定聚类中心后,先进行数据类别的划分,即将剩余点划入与其最近的聚类中心,形成一个个类簇,然后根据用户需要输出聚类结果。算法流程如图 3所示。

    图  3  算法流程图
    Figure  3.  Algorithm Flow

    通过一系列的对比实验验证数据质量聚类算法的聚类效果,并与传统的K-means算法、K-medoids算法和文献[1]中的峰值密度聚类算法进行了对比。

    在对比实验中,采用7个数据集进行实验。数据集A1、A2、A3分别含有3 000个点和20个类簇、5 250个点和35个类簇、7 500个点和50个类簇,并且3个数据集中类簇内点的个数均为150个。数据集S1、S2、S3、S4都含有5 000个点和15个类簇,但是每个数据集中类簇的扩展程度不一样,而且4个数据集中每个类簇的中心是已知的[8]。这7个数据集的二维可视图如图 4图 5所示,图 4图 5中的横、纵坐标分别为数据集二维可视图的X轴和Y轴。

    图  4  数据集A1、A2、A3
    Figure  4.  Datasets of A1, A2, A3
    图  5  聚类中心数据集S1、S2、S3、S4
    Figure  5.  Clustering Centers Datasets of S1, S2, S3, S4

    首先对数据集A1, A2, A3分别使用数据质量聚类算法和K-means算法、K-medoids算法和峰值密度聚类算法进行聚类。将得到的聚类结果进行二维可视化展示,同时,对每个数据集中聚类结果进行统计,记录每种算法在每个类簇中聚集的点个数,与数据集实际每个类簇中应有点的个数进行对比,计算出准确率。

    K-means算法和K-medoids算法需要输入聚类个数,故按照数据集实际情况输入。数据质量聚类算法使用决策图确定聚类中心,如图 6所示为数据集A1、A2和A3通过决策图选出的聚类中心。图 6中彩色点为聚类中心,即横坐标和纵坐标都较大的点。所选出的聚类中心个数在数据集A1中为20,在A2中为35,在A3中为50,这与数据集原有的类簇个数相同。

    图  6  数据集A1、A2、A3的聚类中心
    Figure  6.  Clustering Centers Datasets of A1, A2, A3

    图 7是4种聚类算法的结果图,从图 7中可以发现,数据质量聚类算法和峰值密度聚类算法都有较好的聚类效果。对于聚类算法的准确率统计每一个数据集中4种算法对每一个类簇聚类的准确率,即类簇内点的个数和实际每个类内点的个数比值。统计结果如表 1所示。

    图  7  数据集A1、A2、A3聚类结果比较
    Figure  7.  Comparison of Clustering Results on Datasets A1, A2, A3
    表  1  数据集A1、A2、A3实验平均准确率统计表/%
    Table  1.  Clustering Accuracies of Datasets A1, A2, A3/%
    数据集 K-means
    算法
    K-medoids
    算法
    峰值密度
    聚类
    数据质量
    聚类
    A1 86.87 70.33 95.33 96.00
    A2 76.84 79.73 96.65 96.91
    A3 79.81 61.17 96.17 97.49
    下载: 导出CSV 
    | 显示表格

    表 1的统计结果中可以发现,数据质量的聚类算法具有最高的平均准确率,相比于传统的K-mean算法和K-medoids算法分割聚类算法,在准确率上提高了很多,同时,与最新的峰值密度聚类算法相比,准确率也有所提高。

    在数据集S1、S2、S3、S4中,每个类簇的中心是已知的,通过比较4种算法得到的聚类中心与实际中心的偏差量,对比每种算法确定聚类中心的效果。使用决策图确定数据质量聚类算法的聚类中心。K-means算法与K-medoids算法依然输入真实的类簇个数,4种算法聚类结果二维可视图如图 8所示。

    图  8  数据集S1、S2、S3、S4聚类结果比较
    Figure  8.  Comparison of Clustering Results on Datasets S1, S2, S3, S4

    图 8中,数据质量聚类算法和峰值密度聚类算法的聚类效果直观上要优于K-means算法和K-medoids算法。在对比聚类效果后,统计4种聚类算法所确定的聚类中心与实际中心位置的误差率。具体计算式为:

    $$ {{\gamma }_{i}}=\frac{1}{2}(\frac{{{x}_{i}}-{{a}_{i}}}{{{a}_{i}}}+\frac{{{y}_{i}}-{{b}_{i}}}{{{b}_{i}}}) $$ (2)

    式中,xiyi为实验中得到的聚类中心的坐标;aibi为数据集类簇实际的坐标。γi值越小,说明越接近实际的类簇中心。每个数据集中的平均误差率统计结果如表 2所示。

    表  2  数据集S1、S2、S3、S4聚类中心平均误差率统计/%
    Table  2.  Error Rate of Clustering Centers for Datasets S1, S2, S3, S4/%
    数据集 K-means
    算法
    K-medoids
    算法
    峰值密度
    聚类
    数据质量
    聚类
    S1 0.37 0.49 2.81 0.14
    S2 0.53 0.74 0.31 0.11
    S3 0.98 1.55 0.66 0.15
    S4 1.39 1.71 0.46 0.14
    下载: 导出CSV 
    | 显示表格

    表 2中可以看出,数据质量聚类算法所确定的聚类中心与实际聚类中心的误差率最小,几乎与实际中心重合,明显优于K-means算法、K-medoids算法和峰值密度聚类算法。

    综合数据集A1、A2、A3和数据集S1、S2、S3、S4的实验结果,可以认为数据质量聚类算法比传统的分割聚类算法和峰值密度聚类算法有更好的聚类效果。

    上述实验结果说明,数据质量聚类算法不仅可以准确提取出聚类中心的个数,而且在剩余点的划分上也有很高的准确率,对于数据集A1、A2、A3平均准确率分别达到了96.00%、96.91%和97.49%。在确定聚类中心上,本文方法也有很高的准确率,对于数据集S1、S2、S3、S4,聚类中心的平均误差率分别为0.14%、0.11%、0.15%和0.14%。数据质量聚类算法不仅在各项指标上明显优于传统的K-means算法和K-medoids算法,而且优于峰值密度聚类算法。

    对于数据集A1、A2、A3,数据质量聚类算法比峰值密度聚类算法在平均准确率上分别提高了0.67、0.26和1.32个百分点,而对于数据集S1、S2、S3、S4,聚类中心的平均误差率分别降低了20.07、2.82、4.40和3.29倍。综合以上实验结果,可以证明数据质量聚类算法能够准确确定聚类中心,并能够得到准确的聚类结果。

    传统的中心聚类算法虽然简单快速,但是需要用户输入较多参数,并且具有球形偏差,在实际应用中有较多限制。本文提出了数据质量的概念,即代表了数据场中数据的固有属性,并且根据挖掘视角的不同,数据质量所代表的属性也不同。在本文中,赋予数据质量数据密集程度的属性,结合物理场中引力的概念,提出一种确定聚类中心的新方法,即具有较大质量和较大距离属性的点可以视为聚类中心。本文方法解决了需要用户输入参数、聚类结果受初始点影响等问题,减少了中心聚类算法在实际应用中的限制。实验结果证明,数据质量聚类算法能够准确找到数据集的聚类中心,并具有较为准确的聚类结果。

    数据质量聚类算法虽然较为准确,但在实际应用中需要提高算法的效率,可以采取分布式计算的方式,这将是下一步研究的方向。

    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20230404

  • 图  1   铁路路基服役状态监测内容

    Figure  1.   Monitoring Content of the Service Status of Railway Subgrade

    图  2   天-空-车-地一体化的路基灾害隐患早期识别与服役状态监测体系

    Figure  2.   Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Geohazards and Service Status of Subgrade

    图  3   航天平台在铁路沿线灾害的应用

    Figure  3.   Application of Remote Sensing Technology in Geohazards along the Railway

    图  4   无人机技术对铁路沿线地质灾害隐患的识别

    Figure  4.   Detection of Geohazards Using the Unmanned Aerial Vehicle Technology Along the Railway

    图  5   沪宁铁路K22~K295全线路轨检车动检数据统计[65]

    Figure  5.   TQI Monitoring for the Shanghai-Nanjing Railway K22-K295 Based on Track Inspection Train[65]

    图  6   探地雷达测量技术对内湾线铁路K25+200路段路基翻浆冒泥病害检测[74]

    Figure  6.   Detection of Subgrade Mud in the K25+200 Section of the Neiwan Railway Using GPR Technique[74]

    图  7   多源协同在路基灾害及服役状态监测的应用

    Figure  7.   Application of Multi-source Monitoring Techniques in the Subgrade Service Status of the Shanghai-Nanjing Railway

  • [1] 铁路局网站. 2016年铁路安全情况公告[R/OL].国家铁路局, http://www.nra.gov.cn, 2016.

    National Railway Administration of the People's Republic of China. 2016 Railway Safety Announcement[R/OL]. National Railway Administration of the People's Republic of China,http://www.nra.gov.cn, 2016.

    [2]

    Wu Y, Fu H R, Bian X C, et al. Impact of Extreme Climate and Train Traffic Loads on the Performance of High-Speed Railway Geotechnical Infrastructures[J]. Journal of Zhejiang University: Science A, 2023, 24(3): 189-205.

    [3] 于进学. 新建客运专线和既有线并行地段路基病害的分析与处理[J]. 铁道建筑, 2009, 49(5): 87-88.

    Yu Jinxue. Analysis and Treatment of Subgrade Diseases in Parallel Sections of Newly-Built Passenger Dedicated Lines and Existing Lines[J]. Railway Engineering, 2009, 49(5): 87-88.

    [4] 谭家华. 张吉怀高速铁路深路堑边坡失稳机理及治理措施[J]. 铁道建筑, 2023, 63(7): 138-143.

    Tan Jiahua. Instability Mechanism and Treatment Measures of Deep Cutting Slope of Zhangjiajie-Jishou-Huaihua High Speed Railway[J]. Railway Engineering, 2023, 63(7): 138-143.

    [5] 铁路局网站. “10.15”黎湛线43031次货物列车脱轨铁路交通较大事故调查情况[R/OL].国家铁路局, http://www.nra.gov.cn, 2020.

    National Railway Administration of the People's Republic of China. Investigation on Major Railway Traffic Accidents Caused by Derailment of 43031 Freight Trains on the “10.15” Lizhan Line [R/OL]. National Railway Administration of the People's Republic of China, http://www.nra.gov.cn, 2020.

    [6]

    Liu C, Li N, Wu H B, et al. Detection of High-Speed Railway Subsidence and Geometry Irregularity Using Terrestrial Laser Scanning[J]. Journal of Surveying Engineering, 2014, 140(3):04014009.

    [7] 佘小年. 崩塌、滑坡地质灾害监测现状综述[J]. 铁道工程学报, 2007, 24(5): 6-11.

    She Xiaonian. Comprehensive Comments on the Present Situation of Monitoring Collapse and Landslide[J].Journal of Railway Engineering Society, 2007, 24(5): 6-11.

    [8] 王利. 地质灾害高精度GPS监测关键技术研究[D]. 西安: 长安大学, 2014.

    Wang Li. A Study on Key Technology of High Precision GPS Monitoring for Geological Hazard[D]. Xi’an: Chang’an University, 2014.

    [9] 杜源, 王纯, 张勤, 等. 顾及黄土滑坡灾害状态特征的实时GNSS滤波算法[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1216-1222.

    Du Yuan, Wang Chun, Zhang Qin, et al. Real-Time GNSS Filtering Algorithm Considering State Characteristics of Loess Landslide Hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1216-1222.

    [10]

    Xing X M, Chang H C, Chen L F, et al. Radar Interferometry Time Series to Investigate Deformation of Soft Clay Subgrade Settlement: A Case Study of Lungui Highway, China[J]. Remote Sensing, 2019, 11(4): 429.

    [11]

    Dheenathayalan P, Small D, Schubert A, et al. High-Precision Positioning of Radar Scatterers[J]. Journal of Geodesy, 2016, 90(5): 403-422.

    [12]

    Suo Z Y, Zhang J Q, Li M, et al. Improved InSAR Phase Noise Filter in Frequency Domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1185-1195.

    [13]

    Jung J, Kim D J, Lavalle M, et al. Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765-5775.

    [14]

    Gao Zhiliang, Xie Mingli, Ju Nengpan, et al. Multi-source Remote Sensing Dynamic Deformation Monitoring of Accumulation Landslide[J]. Geomatics and Information Science of Wuhan University, 2023, DOI:10.13203/j.whugis20220149. (高志良, 解明礼, 巨能攀, 等. 堆积层滑坡多源遥感动态演变特征分析研究[J]. 武汉大学学报 (信息科学版),2023, DOI:10.13203/j.whugis20220149) doi: 10.13203/j.whugis20220149

    [15] 周正, 赵国堂. 轨道质量指数计算问题的探讨[J]. 中国铁道科学, 2003, 24(3): 64-68.

    Zhou Zheng, Zhao Guotang. Calculation Method of Track Quality Index[J]. China Railway Science, 2003, 24(3): 64-68.

    [16] 胡熠, 谢强, 李朝阳, 等. 岩溶路基注浆质量综合物探检测方法与评价研究[J]. 工程地质学报, 2015, 23(2): 344-351.

    Hu Yi, Xie Qiang, Li Chaoyang, et al. Comprehensive Geophysical Detection Method and Evaluation of Karst Roadbed Grouting[J]. Journal of Engineering Geology, 2015, 23(2): 344-351.

    [17] 董炬洪, 赵志刚. 高速铁路无砟轨道填方路堤病害加固设计与效果分析[J]. 铁道科学与工程学报, 2013, 10(2): 66-73.

    Dong Juhong, Zhao Zhigang. Analysis of the Strengthening Design and for Fill Embankment Disease of High-Speed Railway[J]. Journal of Railway Science and Engineering, 2013, 10(2): 66-73.

    [18]

    Gunn D A, Chambers J E, Uhlemann S, et al. Moisture Monitoring in Clay Embankments Using Electrical Resistivity Tomography[J]. Construction and Building Materials, 2015, 92: 82-94.

    [19]

    Lei T J, Wang J B, Li X Y, et al. Flood Disaster Monitoring and Emergency Assessment Based on Multi-source Remote Sensing Observations[J]. Water, 2022, 14(14): 2207.

    [20] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966.

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.

    [21] 吴立新, 李佳, 苗则朗, 等. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向[J]. 测绘学报, 2021, 50(8): 1109-1121.

    Wu Lixin, Li Jia, Miao Zelang, et al. Pattern and Directions of Spaceborne-Airborne-Ground Collaborated Intelligent Monitoring on the Geohazards Developing Environment and Disasters in Glacial Basin[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1109-1121.

    [22] 孙琪皓,刘桂卫,王飞,等.铁路地质灾害早期识别与监测预警技术及应用研究[J/OL].铁道标准设计, 2024, DOI: org/10.13238/j.issn.1004-2954.202302100005. doi: org/10.13238/j.issn.1004-2954.202302100005

    Sun Qihao, Liu Guiwei, Wang Fei, et al. Research and Application of Early Identification, Monitoring and Warning Technology of Railway Geological Disasters[J/OL]. Railway Standard Design, 2024, DOI: org/10.13238/j.issn.1004-2954.202302100005. doi: org/10.13238/j.issn.1004-2954.202302100005

    [23] 张冠军. 高速铁路运营监测技术综述与展望[J]. 铁道勘察, 2023, 49(1): 7-11.

    Zhang Guanjun. Overview and Prospect of High-Speed Railway Operation Monitoring Technology[J]. Railway Investigation and Surveying, 2023, 49(1): 7-11.

    [24]

    Liu K, Wang M, Zhou T J. Increasing Costs to Chinese Railway Infrastructure by Extreme Precipitation in a Warmer World[J]. Transportation Research Part D: Transport and Environment, 2021, 93: 102797.

    [25] 宋陶然. 复杂艰险山区铁路线路-结构物-大临工程多目标智能协同优化[D]. 长沙: 中南大学, 2023.

    Song Taoran. Multi-objective Concurrent Intelligent Optimization of Railway Alignments, Structures and Large-Scale Auxiliary Construction Projects in Complex Mountainous Regions[D]. Changsha: Central South University, 2023.

    [26] 朱颖, 魏永幸. 汶川地震铁路工程震害特征及工程抗震设计对策思考[J]. 岩石力学与工程学报, 2010, 29(S1): 3378-3386.

    Zhu Ying, Wei Yongxing. Characteristics of Earthquake Damage of Railway Engineering in Wenchuan Earthquake and Countermeasures for Seismic Design of Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3378-3386.

    [27] 史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414.

    Shi Peijun, Yang Wentao. Compound Effects of Earthquakes and Extreme Weathers on Geohazards in Mountains[J]. Climate Change Research, 2020, 16(4): 405-414.

    [28] 牟凯. 山区铁路边坡危岩早期识别与风险评价方法研究[D]. 北京: 北京交通大学, 2022.

    Mou Kai. Research on Early Identification and Risk Evaluation Methods of Dangerous Rocks on Railway Slopes in Mountainous Areas[D].Beijing: Beijing Jiaotong University, 2022.

    [29] 郑琅, 张欣, 王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江, 2022, 53(8): 117-122.

    Zheng Lang, Zhang Xin, Wang Lijuan. Emergency Investigation and Formation Mechanism of Landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 53(8): 117-122.

    [30] 张仲礼. 南昆铁路施工机械化综述[J]. 建筑机械, 1994(1): 35-37.

    Zhang Zhongli. Summary of Construction Mechanization of Nanning-Kunming Railway[J]. Construction Machinery, 1994(1): 35-37.

    [31] 刘建友, 赵勇, 吕刚, 等. 隧道下穿高速铁路路基风险分级及风险评价方法研究[J]. 现代隧道技术, 2020, 57(6): 8-16.

    Liu Jianyou, Zhao Yong, Gang Lü, et al. Research on Risk Classification and Assessment Method for Tunnels Crossing Under High-Speed Railway Subgrade[J]. Modern Tunnelling Technology, 2020, 57(6): 8-16.

    [32] 谢启新. 京广线岳阳段防洪问题[J]. 路基工程, 1999(5): 12-15.

    Xie Qixin. Flood Control in Yueyang Section of Beijing-Guangzhou Railway[J]. Subgrade Engineering, 1999(5): 12-15.

    [33]

    Fruneau B, Achache J, Delacourt C. Observation and Modelling of the Saint-Étienne-de-Tinée Landslide Using SAR Interferometry[J]. Tectonophysics, 1996, 265(3/4): 181-190.

    [34]

    Galve J P, Castaneda C, Gutierrez F. Railway Deformation Detected by DInSAR over Active Sinkholes in the Ebro Valley Evaporite Karst, Spain[J]. Natural Hazards and Earth System Sciences, 2015, 15(11): 2439-2448.

    [35] 刘欢, 王立娟, 马松, 等. DInSAR技术在成昆铁路复线路基及边坡垂直变形监测中的应用[J]. 铁道建筑, 2020, 60(3): 67-72.

    Liu Huan, Wang Lijuan, Ma Song, et al. Application of D-InSAR Technology in Vertical Deformation Monitoring of Subgrade and Slope in Chengdu-Kunming Double Track Railway[J]. Railway Enginee-ring, 2020, 60(3): 67-72.

    [36] 许文斌, 罗兴军, 朱建军, 等. InSAR火山形变监测与参数反演研究进展[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1632-1642.

    Xu Wenbin, Luo Xingjun, Zhu Jianjun, et al. Review of Volcano Deformation Monitoring and Modeling with InSAR[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1632-1642.

    [37] 陈玄, 高伟, 段光耀, 等. 京津城际铁路(北京段)沉降监测及影响因素分析[J]. 遥感信息, 2020, 35(3): 78-84.

    Chen Xuan, Gao Wei, Duan Guangyao, et al. Settlement Monitoring and Influencing Factor Analysis of Beijing-Tianjin Intercity Railway(Beijing Section)[J]. Remote Sensing Information, 2020, 35(3): 78-84.

    [38]

    Luo Q L, Zhou G Q, Perissin D. Monitoring of Subsidence Along Jingjin Inter-City Railway with High-Resolution TerraSAR-X MT-InSAR Analysis[J]. Remote Sensing, 2017, 9(7): 717.

    [39]

    Lai W, Shen Q, Wang H, et al. InSAR-Derived Land Subsidence in Wuhan Between 2015 and 2020[J]. All Earth, 2022, 34(1): 224-242.

    [40]

    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

    [41]

    Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470.

    [42]

    Gao Z, He X F, Xiao R Y, et al. Development of an Imagewise Stacking Method to Mitigate Atmospheric Effect with an Application to Lianyan Railway[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4787-4797.

    [43]

    Wang H Y, Chang L, Markine V. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data[J]. Sensors, 2018, 18(2): 413.

    [44]

    Zhu Y R, Qiu H J, Cui P, et al. Early Detection of Potential Landslides Along High-Speed Railway Lines: A Pressing Issue[J]. Earth Surface Processes and Landforms, 2023, 48(15): 3302-3314.

    [45] 王栋,张广泽,徐正宣,等. 基于时间序列InSAR技术的铁路地质灾害识别研究 [J]. 地质灾害与环境保护, 2019, 30 (3): 85-91]

    Wang dong, Zhang guangze, Xu Zhengxuanet al.,Research on Railway Geohazards Early Detection Based on Time-Series InSAR Technology[J]. Journal of Geological Hazards and Environment Preservation, 2019, 30 (3): 85-91.

    [46]

    Journault J, Macciotta R, Hendry M T, et al. Mea suring Displacements of the Thompson River Valley Landslides, South of Ashcroft, BC, Canada, Using Satellite InSAR[J]. Landslides, 2018, 15(4): 621-636.

    [47]

    Peduto D, Huber M, Speranza G, et al. DInSAR Data Assimilation for Settlement Prediction: A Case Study of a Railway Embankment in the Netherlands[J]. Canadian Geotechnical Journal, 2017, 54(4): 502-517.

    [48]

    Liu X X, Wang Y J, Yan S Y. Interferometric SAR Time Series Analysis for Ground Subsidence of the Abandoned Mining Area in North Peixian Using Sentinel-1A TOPS Data[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(3): 451-461.

    [49]

    Xiang W, Zhang R, Liu G X, et al. Extraction and Analysis of Saline Soil Deformation in the Qarhan Salt Lake Region (in Qinghai, China) by the Sentinel SBAS-InSAR Technique[J]. Geodesy and Geodynamics, 2022, 13(2): 127-137.

    [50]

    Shami S, Azar M K, Nilfouroushan F, et al. Assessments of Ground Subsidence Along the Railway in the Kashan Plain, Iran, Using Sentinel-1 Data and NSBAS Algorithm[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102898.

    [51] 苗晓岐. 多源遥感技术在藏东南艰险复杂山区泥石流物源识别中的应用[J]. 地质通报, 2021, 40(12): 2052-2060.

    Miao Xiaoqi. Application of Multi-source Remote Sensing Technology in the Identification of Debris Flow Source Within Complex Mountainous Areas in Southeast Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2052-2060.

    [52] 刘桂卫, 王长进, 李国和, 等. 遥感技术在既有铁路地灾防治中应用方法研究[J]. 铁道工程学报, 2019, 36(6): 23-27.

    Liu Guiwei, Wang Changjin, Li Guohe, et al. Application Research on the Remote Sensing Technology in Geological Disaster Prevention and Control of Existing Railway[J]. Journal of Railway Engineering Society, 2019, 36(6): 23-27.

    [53]

    Huntley D, Rotheram-Clarke D, Pon A, et al. Benchmarked Radarsat-2, Sentinel-1 and Radarsat Constellation Mission Change-Detection Monitoring at North Slide, Thompson River Valley, British Columbia: Ensuring a Landslide-Resilient National Railway Network[J]. Canadian Journal of Remote Sensing, 2021, 47(4): 635-656.

    [54] 吴立新, 许志华, 范松滔, 等. 植被稀疏地区沟蚀变化的地面激光扫描监测与沟蚀量估算[J]. 武汉大学学报(信息科学版), 2017, 42(10): 1343-1349.

    Wu Lixin, Xu Zhihua, Fan Songtao, et al. Gully Erosion TLS Monitoring and Estimation in Area of Sparse Vegetation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1343-1349.

    [55]

    Stringer J, Brook M S, Justice R. Post-Earthquake Monitoring of Landslides Along the Southern Kaikōura Transport Corridor, New Zealand[J]. Landslides, 2021, 18(1): 409-423.

    [56] 李小玲, 胡才源, 孙全福, 等. 无人机遥感在高山峡谷区崩塌地质调查中的应用[J]. 地理空间信息, 2021, 19(1): 78-81.

    Li Xiaoling, Hu Caiyuan, Sun Quanfu, et al. Application of UAV Remote Sensing in Geological Survey of Collapses in Alpine Canyon Region[J]. Geospatial Information, 2021, 19(1): 78-81.

    [57] 张国全. 降低高速铁路TQI指标相关分析[J]. 铁道建筑技术, 2016(2): 75-78.

    Zhang Guoquan. Correlation Analysis on How to Reduce the TQI Index of High-Speed Railway[J]. Railway Construction Technology, 2016(2): 75-78.

    [58] 王国祥, 高俊, 卢建康. 高速铁路轨道几何状态控制指标及检测技术探讨[J]. 铁道勘察, 2012, 38(1): 1-4.

    Wang Guoxiang, Gao Jun, Lu Jiankang. Control Index and Inspection Technique of Track Geometry State in High-Speed Railway[J]. Railway Investigation and Surveying, 2012, 38(1): 1-4.

    [59] 庄鹏, 姜楠. 利用轨道质量指数(TQI)指导线路养护维修[J]. 铁道运营技术, 2008, 14(1): 27-29.

    Zhuang Peng, Jiang Nan. Using Track Quality Index (TQI) to Guide Line Maintenance[J]. Railway Operation Technology, 2008, 14(1): 27-29.

    [60]

    Liu R K, Xu P, Sun Z Z, et al. Establishment of Track Quality Index Standard Recommendations for Beijing Metro[J]. Discrete Dynamics in Nature and Society, 2015, 2015: 473830.

    [61]

    Lasisi A, Attoh-Okine N. An Unsupervised Learning Framework for Track Quality Index and Safety[J]. Transportation Infrastructure Geotechnology, 2020, 7(1): 1-12.

    [62]

    Li M, Persson I, Spännar J, et al. On the Use of Second-Order Derivatives of Track Irregularity for Assessing Vertical Track Geometry Quality[J]. Vehicle System Dynamics, 2012, 50(sup1): 389-401.

    [63] 康熊, 王卫东, 刘金朝. 基于RAMS的高速铁路轨道平顺状态综合评价体系研究[J]. 中国铁道科学, 2013, 34(2): 13-17.

    Kang Xiong, Wang Weidong, Liu Jinzhao. Research on Comprehensive Evaluation System for Track Irregularity of High-Speed Railway Based on RAMS[J]. China Railway Science, 2013, 34(2): 13-17.

    [64]

    Lu C F, Cai C X. Overview on Safety Management and Maintenance of High-Speed Railway in China[J]. Transportation Geotechnics, 2020, 25: 100397.

    [65] 陈舒阳, 路良恺, 姚永胜. 基于TQI与沉降关联性分析的高铁路基服役状态监测[J]. 土木与环境工程学报(中英文), 2020, 42(6): 63-70.

    Chen Shuyang, Lu Liangkai, Yao Yongsheng. Service Status Monitoring of High-Speed Railway Subgrade Based on Correlation Analysis of Track Quality Index and Settlement[J]. Journal of Civil and Environmental Engineering, 2020, 42(6): 63-70.

    [66] 刘维正, 徐林荣, 左珅, 等. 桩筏地基加固对紧邻既有线路基的影响[J]. 交通运输工程学报, 2015, 15(3): 16-26.

    Liu Weizheng,Xu Linrong,Zuo Shen, et al. Influence of Pile-Raft Foundation Reinforcement on Subgrade of Adjacent Existing Railway[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 16-26.

    [67]

    Kromer R A, Hutchinson D J, Lato M J, et al. Identifying Rock Slope Failure Precursors Using LiDAR for Transportation Corridor Hazard Management[J]. Engineering Geology, 2015, 195: 93-103.

    [68] 武文波, 张国辉, 梁洪武, 等. 采用全自动全站仪的滑坡监测系统研究[J]. 仪器仪表学报, 2004, 25(S1): 412-413.

    Wu Wenbo, Zhang Guohui, Liang Hongwu, et al. Research on Landslide Monitoring System Using Automatic Total Station[J]. Chinese Journal of Scientific Instrument, 2004, 25(S1): 412-413.

    [69]

    Jia C, Yang X, Wu J, et al. Monitoring Analysis and Numerical Simulation of the Land Subsidence in Linear Engineering Areas[J]. KSCE Journal of Civil Engineering, 2021, 25(7): 2674-2689.

    [70]

    Quang L H, Loi D H, Sassa K, et al. Susceptibility Assessment of the Precursor Stage of a Landslide Threatening Haivan Railway Station, Vietnam[J]. Landslides, 2018, 15(2): 309-325.

    [71]

    Košt'􀅡k B. Deformation Effects in Rock Massifs and Their Long-Term Monitoring[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2006, 39(3): 249-258.

    [72]

    Cheng Y K, Shi Z W. Permanent Deformation and Temperature Monitoring of Subgrades Using Fiber Bragg Grating Sensing Technology[J]. Journal of Sensors, 2021, 2021: 8824058.

    [73]

    Bai M Z, Chen Y, Wang C L, et al. Radar Spectral Analysis and Evaluation of the Effect of Grouting Treatment in Karst Caves and Soil Caves[J]. Environmental Earth Sciences, 2018, 77(24): 795.

    [74]

    Kuo C P, Hsu C H, Wu C W, et al. Study on the Mechanism and Inspection Method of Railway Pumping[C]//Bearing Capacity of Roads, Railways and Airfields.Greece, Athens, 2017.

    [75]

    He Y, Li Y, Xu L. An Integrated Multisource and Multiscale Monitoring Technique for Assessing the Health Status of High-Speed Railway Subgrade[J]. Remote Sensing, 2024, 16(11): 1972.

图(7)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  79
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-08-04

目录

/

返回文章
返回