融合区域空间相似性特征与事件时空特征的犯罪预测模型

A Crime Prediction Model Incorporating Regional Spatial Similarity Characteristics and Spatio Temporal Characteristics of Events

  • 摘要: 犯罪预测可预测区域内犯罪活动概率和趋势,优化执法资源分配、降低犯罪率并提高社会安全。由于犯罪事件存在空间相似性、周期性、空间异质性等变化规律,现有的犯罪预测方法较少考虑犯罪区域空间相似性特征,并在面对时空数据的长时空依赖问题上具有较强的局限性,导致预测效果有限。针对此问题,论文设计了一种融合区域空间相似性特征与事件时空特征的犯罪事件时空分布预测模型。该模型分为空间相似性特征捕捉和预测两部分,分别由区域空间相似性特征捕捉网络与基于特征融合编码的犯罪预测网络组成。模型利用空间通道注意力机制,以多图卷积网络为基础,设计了一个空间通道注意力多图卷积网络,实现空间相似性特征的捕捉。在此基础上,通过可嵌入线性序列表示犯罪事件信息,再融合捕捉到的犯罪区域空间相似性特征,建立了具有时空犯罪特征表示编码;为增强预测模型的长时空依赖性,设计了一种基于多头时空注意力机制的 Transformer 预测网络。为验证提出模型的有效性,论文通过芝加哥及洛杉矶地区不同时期的犯罪事件数据进行了实验,并与 STGCN、 ST-ResNet 和 ConvLSTM 方法进行了对比。实验结果表明,在不同区域,所提出的模型不仅在大尺度上的表现优于其他模型并且在小尺度上表现出更强的准确性和稳定性。

     

    Abstract: Objective: Crime forecasting can predict the probability and trend of criminal activities in a region, optimize the allocation of law enforcement resources, reduce crime rates and improve social security. Because of the changing laws of spatial similarity, periodicity and spatial heterogeneity of crime events, existing crime prediction methods give less consideration to the characteristics of spatial similarity in crime regions and have strong limitations in facing the problem of long-term spatial and temporal dependence on spatial and temporal data, resulting in limited prediction effects. Methods: The model is divided into two parts: spatial similarity feature capture and prediction, which are composed of a regional spatial similarity feature capture network and a feature fusion coding-based crime prediction network, respectively. The model utilizes the spatial channel attention mechanism and designs a spatial channel attention multi-graph convolutional network based on a multi-graph convolutional network to achieve spatial similarity feature capture. On this basis, the crime event information is represented by embeddable linear sequences, and then the captured spatial similarity features of the crime region are fused to establish a spatio temporal crime feature representation coding; in order to enhance the long spatio temporal dependence of the prediction model, a Transformer prediction network based on the multi-head spatio temporal attention mechanism is designed. To validate the effectiveness of the proposed model, the paper conducts experiments with crime event data from different periods in Chicago and Los Angeles areas and compares it with STGCN, ST-ResNet and ConvLSTM methods. Results: The experimental results show that the proposed model not only outperforms other models on large scales but also exhibits stronger accuracy and stability on small scales in different regions. Conclutions: The methodology improves the accuracy of crime prediction.

     

/

返回文章
返回