非线性尺度空间改进的光学与SAR影像自动配准

Automatic Registration of Optical and SAR Images Based on Nonlinear Scale-Space Enhancement

  • 摘要: 针对异源遥感影像非线性辐射畸变造成的匹配困难问题,本文提出了基于非线性尺度空间改进的光学与SAR影像自动配准方法。首先,通过改进彩色像素对比度计算和线性参数模型,有效增强了影像的对比度信息,提升了光学与SAR影像的辐射一致性,显著提高了同名特征的重复度。然后利用非线性扩散方程来描述影像扩散特征,改善了高斯尺度空间的边界模糊问题。然后,采用ROEWA算子和Sobel算子分别计算SAR影像和光学影像的梯度信息,继而提取稳定的Harris特征点。最后,联合Log-polar描述框架生成高区分度特征向量描述子,并通过欧氏距离和快速样本一致性算法(Fast Sample Consensus,FSC)剔除误匹配。实验结果表明,相较于PSO-SIFT、OS-SIFT和HAPCG方法,本算法在保证精度的情况下能匹配到更多的同名特征点,实现了SAR影像与光学影像的自动和稳健配准。

     

    Abstract: Objectives:To address the challenging problem of matching heterogeneous remote sensing images caused by nonlinear radiometric distortions,this paper proposes a nonlinear scale-space enhanced automatic matching method for optical and SAR images. Methods: First,by improving the calculation of color pixel contrast,the contrast information of the images is effectively enhanced,improving the contrast consistency between optical and SAR images,and enhancing the repeatability of corresponding points. Then,a nonlinear diffusion equation is employed to describe the image diffusion characteristics,avoiding the issue of boundary blurring in the Gaussian scale-space. Subsequently,the Multiscale Ratio Of Exponentially Weighted Averages (ROEWA) operator and the Sobel operator are utilized to compute the gradient information of the SAR image and the optical image,respectively,followed by the extraction of stable Harris feature points. Finally,a joint Log-polar descriptor framework is employed to compute a high discrimination feature vector,and outliers are eliminated using the Euclidean distance and the Fast Sample Consensus (FSC) algorithm.Results and Conclusions: Experimental results demonstrate that compared to the PSO-SIFT,OS-SIFT,and HAPCG methods,the proposed algorithm achieves a higher number of matched corresponding points while maintaining similar accuracy,thereby achieving automatic and robust matching of SAR and optical images.

     

/

返回文章
返回