星载BDS3-R极地观测时空性能仿真分析

宋敏峰, 何秀凤

宋敏峰, 何秀凤. 星载BDS3-R极地观测时空性能仿真分析[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230262
引用本文: 宋敏峰, 何秀凤. 星载BDS3-R极地观测时空性能仿真分析[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230262
SONG Minfeng, HE Xiufeng. Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230262
Citation: SONG Minfeng, HE Xiufeng. Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230262

星载BDS3-R极地观测时空性能仿真分析

基金项目: 

国家自然科学基金(42304053,41830110),江苏省卓越博士后计划(2023ZB382)。

详细信息
    作者简介:

    宋敏峰,博士,主要从事GNSS-R算法及海洋、极地应用研究。minfeng@hhu.edu.cn

    通讯作者:

    何秀凤,博士,教授。xfhe@hhu.edu.cn

  • 中图分类号: P228

Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations

  • 摘要: 针对多种轨道类型的北斗卫星导航系统(Beidou Satellite Navigation System III,BDS3)反射信号进行极地观测具有独特性,本文对为期10天的极地北斗三代卫星导航系统反射(BDS3 Reflectometry,BDS3-R)仿真事件进行了分析,并提出了新的时空观测性能评估方法。从卫星轨道高度和倾角两方面,对BDS3-R技术在极地观测中的时空性能展开了深入研究。结果表明,在极地区域(纬度>66.34°)随着卫星轨道高度增加,重访时间增大、空间分辨率逐渐降低。当轨道高度为800km时,重访周期约为35小时,平均空间分辨率约为17.6公里。同时,发现高轨卫星GEO有利于极地区域掠射观测事件的产生。此外,随着轨道倾角接近90度,重访周期逐渐增大。当倾角小于80度或大于100度时,BDS3-R存在南北极中心区域监测盲区。因此推荐采用70~80度和80~90度倾角的双星组网方式进行极地观测。分析结果也表明极地观测趋于采用较大反射天线倾角,且指向方位对反射事件数量影响明显。研究结果对未来基于BDS3-R技术进行极地监测具有借鉴意义。
    Abstract: Objectives: The polar observation of the reflectance signals from various orbit types in the Beidou Satellite Navigation System III (BDS3) presents distinctive characteristics. This paper analyzes a 10-day simulation event of polar Beidou third-generation satellite navigation system reflectometry (BDS3 Reflectometry, BDS3-R) and proposes a novel spatiotemporal observation performance assessment method. Methods: Based on the concept of Knearest neighbors, a novel method for calculating temporal and azimuthal resolution is proposed. This research delves into the spatiotemporal performance of BDS3-R technology in polar observations, considering satellite orbit altitude and inclination. Results: The findings reveal that in the polar region (latitude > 66.34°), an increase in satellite orbit altitude leads to a gradual extension of revisit time and a reduction in spatial resolution. Specifically, at an orbit altitude of 800 km, the revisit period reaches approximately 35 hours, with an average spatial resolution of about 17.6 km. Furthermore, high-orbit satellites, such as GEO, demonstrate advantages in polar grazing observation events. Additionally, as the inclination of the BDS3-R orbit approaches 90 degrees, there is a gradual increase in the revisit period. However, BDS3-R exhibits blind areas in monitoring the polar center when the inclination is less than 80 degrees or greater than 100 degrees. Conclusions: Consequently, we recommend adopting a dual constellation design with inclinations of 70-80 degrees and 80-90 degrees. The analyses also show that polar observations tend to use larger reflector antenna inclinations and that pointing orientation has a significant effect on the number of reflection events. These research findings have substantial implications for future GNSS-R polar monitoring based on the BDS3 system.
  • [1]

    SONG M, HE X, JIA D, et al. Sea Surface States Detection in Polar Regions Using Measurements of GroundBased GNSS Interferometric Reflectometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14.

    [2]

    FRANCESC MUNOZ-MARTIN J, ONRUBIA R, PASCUAL D, et al. Experimental Evidence of Swell Signatures in Airborne L5/E5a GNSS-Reflectometry[J]. Remote Sensing, 2020, 12(11):1759.

    [3]

    QIN L, LI Y. Wind Speed Retrieval Method for Shipborne GNSS-R[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19.

    [4]

    WANG Y, JADE MORTON Y. Coherent GNSS Reflection Signal Processing for High-Precision and HighResolution Spaceborne Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers Inc., 2021, 59(1):831-842.

    [5]

    CARDELLACH E, FABRA F, NOGUÉS-CORREIG O, et al. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques:Application to the GOLD-RTR data sets[J]. Radio Science, 2011, 46(5):1-16.

    [6]

    LOWE S T, LABRECQUE J L, ZUFFADA C, et al. First spaceborne observation of an Earth-reflected GPS signal[J]. Radio Science, 2002, 37(1):7-28.

    [7]

    CLARIZIA M P, GOMMENGINGER C P, GLEASON S T, et al. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean[J]. Geophysical Research Letters, 2009, 36(2):n/a-n/a.

    [8]

    ASGARIMEHR M, WICKERT J, REICH S. TDS-1 GNSS Reflectometry:Development and Validation of Forward Scattering Winds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Institute of Electrical and Electronics Engineers, 2018, 11(11):4534-4541.

    [9]

    RODRIGUEZ-ALVAREZ N, HOLT B, JARUWATANADILOK S, et al. An Arctic sea ice multi-step classification based on GNSS-R data from the TDS-1 mission[J]. Remote Sensing of Environment, 2019, 230:111202.

    [10]

    SONG M, HE X, WANG X, et al. Study on the Exploration of Spaceborne GNSS-R Raw Data Focusing on Altimetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:6142-6154.

    [11]

    CAMPS A, VALL·LLOSSERA M, PARK H, et al. Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture:Global and Regional Differences and Impact of Different Spatial Scales[J]. Remote Sensing, 2018, 10(11):

    [12]

    CARDELLACH E, LI W, RIUS A, et al. First Precise Spaceborne Sea Surface Altimetry with GNSS Reflected Signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2020, 13:102-112.

    [13]

    CARTWRIGHT J, NGUYEN V, JALES P, et al. Sea Ice Classification and Altimetry using Grazing Angle Reflected GNSS Signals Measured by Spire’s Nanosatellite Constellation[J]. EGU21, Copernicus Meetings, 2021.

    [14]

    NGUYEN V A, NOGUÉS-CORREIG O, YUASA T, et al. Initial GNSS Phase Altimetry Measurements From the Spire Satellite Constellation[J]. Geophysical Research Letters, 2020, 47(15).

    [15]

    SONG M, HE X, ASGARIMEHR M, et al. Investigation on Geometry Computation of Spaceborne GNSS-R Altimetry over Topography:Modeling and Validation[J]. Remote Sensing, 2022, 14(9):2105.

    [16]

    CARDELLACH E, WICKERT J, BAGGEN R, et al. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN):Mission Concept[J]. IEEE Access, Institute of Electrical and Electronics Engineers Inc., 2018, 6:13980-14018.

    [17] WANG Yingqiang, YAN Wei, FU Yang, et al. Simulation of Impacts of Single LEO Satellite Orbit Parameters on GNSS Reflection Event's Distribution and Number[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12):1410-1414.(王迎强,严卫,符养,等.单颗LEO卫星轨道参数对GNSS反射事件分布和数量影响的模拟研究[J].武汉大学学报(信息科学版),2009, 34(12):1410.)
    [18] YANG Dongkai, WANG Feng, LI Weiqiang, et al. Simulation Analysis of BeiDou Reflection Events Based on LEO Satellites[J]. Chinese Journal of Radio Science, 2015, 30(3):409-416.(杨东凯,王峰,李伟强,等.基于低轨卫星的北斗反射事件仿真分析[J].电波科学学报,2015, 30(03):409-416.)
    [19] LIU Congliang, BAI Weihua, XIA Junming, et al. Simulation Study of Spaceborne GNSS-R Events[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6):826-831, 839. doi:10.13203/j.whugis20160161(柳聪亮,白伟华,夏俊明,等.低轨卫星星载GNSS反射事件模拟分析[J].武汉大学学报(信息科学版), 2018, 43(6):826-831, 839.)
    [20] WANG Feng, YANG Dongkai, ZHANG Bo. Spatiotemporal Performance of Spaceborne Global NavigationSatellites System Reflectometry[J]. Journal of Electronics&Information Technology, 2022, 44(2):760-766. doi:10.11999/JEIT201034.(王峰,杨东凯,张波.星载GNSS反射信号时-空性能仿真分析[J].电子与信息学报,2022, 44(2):760-766.)
    [21] BAI Weihua, ZHAO Danyang, XIA Junming, et al. Statistical Analysis of Simulated Space-Borne GNSS-R Data in Different Antenna Coverage and Installation Condition[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3):386-395. doi: 10.13203/j.whugis20190265.(白伟华,赵丹阳,夏俊明,等.不同反射天线覆盖和安装条件下星载GNSS-R关键参数的仿真分析[J].武汉大学学报(信息科学版),:1-15.)
    [22]

    MARKUS, T., NEUMANN, T., MARTINO, A., et al. The Ice, Cloud, and land Elevation Satellite-2(ICESat-2):science requirements, concept, and implementation[J]. Remote sensing of environment. 2017, 190, pp.260-273.

    [23]

    BUSSY-VIRAT, C.D., RUF C.S. and RIDLEY, A.J. Relationship between temporal and spatial resolution for a constellation of GNSS-R satellites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing[J], 2018, 12(1), pp.16-25.

    [24]

    KELSO T S."Frequently Asked Questions:Two-Line Element Set Format[J]. Satellites Times,1998, 4(3):52-54.

    [25] SONG Minfeng, HE Xiufeng, WANG Xiaolei, et al. A GNSS-R geometry computation method considering the Earth's curvature and ellipsoidal height[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6):884-894.(宋敏峰,何秀凤,王笑蕾,等.顾及地球曲率及椭球高的GNSS-R几何计算方法[J].测绘学报,2023, 52(6):884-894.)
    [26] SONG Minfeng, HE Xiufeng, WANG Xiaolei, et al. A New Initialization Method for Specular Points and Space Paths Computation in Spaceborne GNSS-R[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220789.(宋敏峰,何秀凤,王笑蕾,等.星载GNSS-R镜面点及空间路径初始化新方法[J].武汉大学学报(信息科学版),2023:1-11.)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  4
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回