First-Order Gaussian Steerable Filter-Guided Multisource Satellite Remote Sensing Image Registration Method
-
摘要:
针对多源遥感影像间由于存在显著的非线性辐射差异,导致影像配准困难的问题,提出了一种由一阶高斯方向可调滤波器引导的多源影像配准方法。首先,基于影像自带的几何参考信息,计算出参考影像与待配准影像在像方空间的重叠区域,以参考影像面为基准对重叠区域进行均匀分块,通过有理函数模型和数字高程模型计算对应的待配准影像块,建立仿射变换模型对待配准影像块进行几何校正,实现局部影像间的粗配准;然后,在特征检测方面,构造了分块均匀检查策略改进的抗聚簇加速分割测试特征,获取大量分布均匀的特征点,对于特征描述,构造了一组多尺度、多方向的一阶高斯方向可调滤波器对影像卷积,通过对卷积结果进行池化以实现特征降维,得到多源一致的特征描述;最后,基于最近邻原则进行特征匹配,通过剔除误匹配得到高精度同名点对,进一步基于有理函数模型进行平差计算,校准待配准影像的有理多项式系数并对影像进行几何纠正,实现影像间的精配准。基于多组星载多源遥感影像的实验结果表明,所提方法在多时相光学数据、光学-红外数据上的配准精度优于1像素,在光学-合成孔径雷达数据上的配准精度优于1.5像素;计算效率方面,相比于现有同类方法提高1倍以上。
Abstract:ObjectivesAiming at the problem of image registration difficulties caused by the significant differences of multi-source remote sensing images due to the sensor type, temporal phase and illumination conditions, this paper proposes a multisource image registration method guided by first-order Gaussian steerable filters.
MethodsFirst, based on the geometric reference information of the image, the overlapping area of the reference image and the image to be aligned in the image space is calculated, the overlapping area is uniformly partitioned with the reference image surface as the reference, the corresponding image block to be aligned is calculated by the rational function model and the digital elevation model, and the affine transformation model is established to geometrically correct the image block to be aligned, so as to realize the coarse registration between the local images. Second, for feature detection, anti-cluster features from accelerated segmentation test improved by the chunking uniformity checking strategy are constructed to obtain a large number of uniformly distributed feature points. And for feature description, a set of multi-scale, multi-directional first-order Gaussian steerable filters are constructed to convolve the image, and by pooling the convolution results to achieve feature dimensionality reduction, a multi-source consistent feature description is constructed. Finally, feature matching is performed based on the nearest-neighbor principle, and high-precision correspondences are obtained by eliminating mismatches. And bundle adjustment is further performed based on the rational function model to calibrate the rational polynomial coefficients of the images to be aligned and geometrically correct the images, so as to realize the fine registration of the images.
Results and ConclusionsExperimental results using multiple pairs of satellite multisource images show that the accuracy of the proposed method is better than 1 pixel on multi-temporal optical data, optical-infrared data, and 1.5 pixels on optical-synthetic aperture radar data, and the computational efficiency is more than doubled compared to the existing similar methods.
-
Keywords:
- multisource remote sensing /
- image registration /
- steerable filter /
- feature matching
-
经典平差模型和最小二乘估计理论[1]在大地测量等众多科学研究和工程领域中应用广泛,其中,高斯-马尔科夫模型(Gauss-Markov model, GMM)最为常用,而高斯-赫尔默特模型(GaussHelmert model, GHM)可视为经典平差模型的一般通用形式。在实际应用中,坐标转换、回归模型、数字地面模型和大地测量反演等平差模型的系数矩阵包含随机的观测误差,从而使得GMM扩展为随机系数矩阵的变量含误差(errors-invariables, EIV)模型[2]。文献[3]提出同时顾及观测向量和系数矩阵中随机误差的整体最小二乘(total least squares, TLS)估计算法。TLS的非线性特征导致其受制于计算机技术的发展,直至20世纪80年代,文献[4]将TLS引入数值分析领域并提出奇异值分解算法,TLS才开始广泛应用于各专业领域并取得丰富的研究成果。文献[2]中对TLS进行了改进和扩展;文献[5]从TLS的算法、统计特性和可靠性研究等方面综述了TLS方法的研究进展。当误差相关且精度不等时,采用加权整体最小二乘估计(weighted total least squares, WTLS)方法进行求解。文献[6]研究了基于高斯-牛顿迭代法的WTLS算法,该算法假设权矩阵为特殊情况,得到的解在形式上与最小二乘(least squares, LS)解相同;文献[7]研究了在任意权矩阵的一般情况下的WTLS算法;文献[8]研究了特殊结构下WTLS算法的迭代方法并将其应用于实际场景;文献[9-12]研究了附有等式和不等式约束情况下的WTLS算法;文献[13]研究了稳健WTLS算法。
通过对EIV模型的形式进行变换,文献[14]提出部分EIV(partial EIV, PEIV)模型,提高了系数矩阵仅含部分随机量情况下的计算效率。文献[15]对PEIV模型进行线性化,推导了PEIV模型的LS算法。文献[16-17]从模型的一般性出发,将EIV模型扩展至通用EIV模型,将经典平差的GHM中观测向量的系数矩阵和参数向量的系数矩阵由固定矩阵推广为随机矩阵,涵括随机系数矩阵的各类情况,同时推导了通用EIV模型在任意权矩阵情况下的一般性WTLS算法。
通用EIV模型的非线性使得该算法在估计量较多时计算量大。本文利用非线性平差原理,将通用EIV模型展开后的二阶项纳入平差方程的常数项,从而将其转化为GHM形式,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares, LTLS)算法。相较于WTLS算法,LTLS算法提高了通用EIV模型的计算效率,当参数向量初始值与最优值相差较大时,提升了迭代收敛速度。
1 通用EIV平差模型及其WTLS估计
1.1 通用EIV平差模型
GHM的形式为:
$$ \mathit{\boldsymbol{A}}\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{BX}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (1) 式中,y和vy分别为n×1维观测值向量和观测值改正数向量;X为u×1维参数向量;A为观测值向量对应的f×n维系数矩阵;B为参数向量对应的f×u维系数矩阵;w为f×1维常数向量;在经典平差函数模型的定义中,A和B均不含随机误差,为固定矩阵。
当参数向量的系数矩阵B含随机误差时,GHM(式(1))扩展为经典EIV模型。当观测值向量的系数矩阵A和参数向量的系数矩阵B均含随机误差时,GHM(式(1))扩展为通用EIV平差模型[16]:
$$ \left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (2) 式中,A和VA分别为观测值向量对应的f×n维系数矩阵及其改正数矩阵;B和VB分别为参数向量对应的f×u维系数矩阵及其改正数矩阵。由于A、B和y均为随机矩阵,则通用EIV的随机模型为:
$$ \mathit{\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{A}})}\\ {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{B}})}\\ \mathit{\boldsymbol{y}} \end{array}} \right],\mathit{\boldsymbol{v}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)}\\ {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{A}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{B}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (3) $$ \mathit{\boldsymbol{D}}(\mathit{\boldsymbol{L}}) = \delta _0^2{\mathit{\boldsymbol{P}}^{ - 1}} = \delta _0^2\mathit{\boldsymbol{Q}} = \delta _0^2\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{A}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{AB}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{Ay}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{BA}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{B}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{By}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yA}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yB}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (4) 式中,vec(.)表示将矩阵按列向量化;L和v分别为观测数据的k×1维观测值向量及其改正数向量,包括A、B和y中所有观测值及其改正数,其中k=fn+fu+n; P、Q和D(L)分别为L的权矩阵、协因数矩阵和方差协方差矩阵;δ02为单位权方差。
1.2 WTLS估计
根据TLS准则,通用EIV平差模型的求解可转化为最优化估计问题[16]:
$$ \left\{ {\begin{array}{*{20}{l}} {\min {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}}}\\ {s.t.{\rm{ }}\left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}}} \end{array}} \right. $$ (5) 相应目标函数为:
$$ \begin{array}{*{20}{c}} {\mathit{\Phi }(\mathit{\boldsymbol{r}},\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{X}}) = {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}} + 2{\mathit{\boldsymbol{\lambda }}^{\rm{T}}}\left( {\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + } \right.}\\ {\left. {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + \mathit{\boldsymbol{BX}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}}} \right)} \end{array} $$ (6) 将目标函数对估计量分别求偏导并令其等于0,得到非线性方程组:
$$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat X}}}} = 2\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (7) $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat v}}}} = 2\left( {\mathit{\boldsymbol{P\hat v}} + {{\mathit{\boldsymbol{\hat C}}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (8) $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat \lambda }}}} = 2(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{\hat C\hat v}} + \mathit{\boldsymbol{w}}) = \mathit{\boldsymbol{0}} $$ (9) 式中,$ {\boldsymbol{C}}=\left[{\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} \boldsymbol{X}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} A+\boldsymbol{V}_{{\boldsymbol{A}}}\right] ; \hat{{\boldsymbol{v}}}, \hat{\boldsymbol{X}} $分别为观测值向量和参数向量的估计值。
根据式(7)~式(9)可导出:
$$ \mathit{\boldsymbol{\hat v}} = - \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{\hat C}}^{\rm{T}}}\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{w}}) $$ (10) $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat X}} = - {{\left[ {\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}\mathit{\boldsymbol{B}}} \right]}^{ - 1}}\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + } \right.}\\ {\left. {\mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{w}})} \end{array} $$ (11) 式中,$ \hat{\boldsymbol{Q}}_{C}=\hat{\boldsymbol{C}} \boldsymbol{Q} \hat{\boldsymbol{C}}^{\mathrm{T}} $。
以式(2)的LS解作为初始值,根据式(10)和式(11)进行迭代计算可得通用EIV模型的WTLS最优解。
2 通用EIV模型的线性化估计算法
通用EIV模型是非线性模型,观测值矩阵和系数矩阵均为随机量,WTLS算法的计算量随着待估量个数增多将迅速增加。将式(2)展开,利用非线性函数平差原理[18]将二阶项作为模型误差纳入方程的常数项,从而将通用EIV模型转化为线性的GHM,推导出通用EIV模型的LTLS算法。
令X=X0+x,将式(2)展开得:
$$ \begin{array}{c} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}{\mathit{\boldsymbol{X}}_0} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{Bx}} + (\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \\ \left. {\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}} \end{array} $$ (12) 式(12)可表示为:
$$ \begin{array}{*{20}{c}} {\left[ {\left( {{\mathit{\boldsymbol{y}}^{\rm{T}}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right) + \left( {\mathit{\boldsymbol{X}}_0^{\rm{T}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right) + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right] + }\\ {\mathit{\boldsymbol{Bx}} + \left( {\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}}} \end{array} $$ (13) 则通用EIV模型的线性化形式为:
$$ {\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}} + \mathit{\boldsymbol{Bx}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} = \mathit{\boldsymbol{0}} $$ (14) 式中,$ {\boldsymbol{A}}_{{\boldsymbol{l}}}=\left[\begin{array}{llll} {\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I_{f}}} & \boldsymbol{X}_{0}^{\mathrm{T}} & \otimes {\boldsymbol{I_{f}}} & {\boldsymbol{A}} \end{array}\right] ; \ {\boldsymbol{v_{l}}}= \left[\begin{array}{c} \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{A}}}\right) \\ \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{B}}}\right) \\ \boldsymbol{v}_{{\boldsymbol{y}}} \end{array}\right] ; \boldsymbol{w}_{{\boldsymbol{l}}}=\boldsymbol{w}+\boldsymbol{Ay} + {\boldsymbol{B}} \boldsymbol{X}_{0}+\boldsymbol{V}_{{\boldsymbol{A}}} \boldsymbol{v}_{{\boldsymbol{y}}}+\boldsymbol{V}_{{\boldsymbol{B}}} {\boldsymbol{x}}$为常数项,即将式(2)按泰勒展开略去的二阶项VAvy+VBx作为模型误差纳入常数项。
由式(14)可知,线性化后的通用EIV模型与GHM形式一致,可使用最小二乘法得到观测值向量和参数向量:
$$ \mathit{\boldsymbol{\hat x}} = - \mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{bb}}}^{ - 1}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}{\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} $$ (15) $$ {{\mathit{\boldsymbol{\hat v}}}_\mathit{\boldsymbol{l}}} = - \mathit{\boldsymbol{Q}}{{\mathit{\boldsymbol{\hat A}}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}\left( {\mathit{\boldsymbol{B\hat x}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}}} \right) $$ (16) 式中,$ \boldsymbol{N}_{{\boldsymbol{a a}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{Q} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} ; \boldsymbol{N}_{{\boldsymbol{b b}}}= {\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{N}_{{\boldsymbol{a a}}}^{-1} {\boldsymbol{B}} $; Q为观测值向量的协因数矩阵。
通用EIV模型的LTLS算法步骤如下:
1)将实际模型表示为式(2),将观测数据代入得到A、B和y矩阵,并给出观测值数据的协因数阵Q,包括观测值向量Qy、观测值向量系数矩阵QA、参数向量系数矩阵QB。
2)计算通用EIV模型的LS解作为初始参数解:$ \hat{\boldsymbol{X}}^{0}=-\left({\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A }}\boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} {\boldsymbol{B}}\right)^{-1} {\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A}} \boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} · ({\boldsymbol{A y}}+{\boldsymbol{w}})$, 观测值向量改正数初始值取0。
3)根据式(15)和式(16)进行迭代计算,每次迭代将上一次估计值作为初始值代入新的迭代过程,直至前后两次估计值之差小于设定阈值。
GHM按泰勒级数展开仅包含常数项、一阶项(二阶及以上项全部为零),将二阶项纳入线性化后的常数项,该方法极大地减弱了线性化引起的模型误差。因此,在同样以LS解作为初值的情况下,GHM线性化的LTLS解与WTLS解的收敛性一致。此外,根据文献[19]中EIV模型LS解偏差的研究结果,在当前测量技术手段和观测精度条件下,以有偏的LS解作为初值,能够保证TLS迭代计算收敛,除非出现极特殊情况导致LS初始解严重偏离最优值。
参考GHM,式(2)的LTLS算法估计结果的精度计算式为:
$$ \left\{ {\begin{array}{*{20}{l}} {\hat \delta _0^2 = \mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}^{\rm{T}}\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}}/\mathit{r}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}}) = {{\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}{{\left( {{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}} \right)}^{ - 1}}\mathit{\boldsymbol{B}}} \right)}^{ - 1}}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}}) = \mathit{\boldsymbol{Q}} - \mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}\left( {\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{\hat x}}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}} \right){\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{Q}}} \right)}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat x}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}})}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat L}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}})} \end{array}} \right. $$ (17) 式中,多余观测数r=n-t; n为观测值个数;t为必要观测值个数;r与GHM的多余观测数相同;$ \boldsymbol{N}_{{\boldsymbol{A}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{P}^{-1} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} $。
3 LTLS算法实例分析
按照LTLS算法步骤设计实验,比较LTLS算法与WTLS算法的计算结果,验证LTLS算法的正确性、高效性和可行性。实验1设计模拟数据,比较分析单组实验结果和1 000组实验统计结果,验证LTLS算法的正确性;实验2在待估计量数目取不同量级时,比较两种算法的计算时间,验证LTLS算法的高效性;实验3通过实例验证LTLS算法的可行性。
3.1 实验1
在通用EIV模型(式(2))中,设置参数真值X=[5 10]T,系数矩阵A和B中随机量的中误差分别设为0.01和0.02,观测向量y的中误差设为0.03。A、B、y和常数向量w的模拟数据如下:
$$ \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} {12.469}&{11.096}&{15.872}&{11.725}\\ {8.883}&{10.291}&{2.929}&{3.666}\\ {12.321}&{1.109}&{6.392}&{15.809}\\ {3.551}&{12.104}&{3.867}&{1.257} \end{array}} \right], $$ $$ \mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{l}} {10.410}&{17.544}\\ {18.033}&{15.171}\\ {18.631}&{15.855}\\ {15.671}&{11.878} \end{array}} \right], $$ $$ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {27.543}\\ {20.727}\\ {20.839}\\ {25.033} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{c}} { - 1425.323}\\ { - 852.619}\\ { - 1142.913}\\ { - 658.407} \end{array}} \right]。 $$ 采用LTLS算法和WTLS算法的估计结果如表 1所示,LTLS参数解与WTLS参数解完全相等,验证了LTLS算法的正确性。
表 1 参数解及其方差估计值Table 1. Parameter Values and Mean Square Deviations算法 参数解 中误差 $ \hat {\boldsymbol{X}} _1 $ $ \hat {\boldsymbol{X}} _2 $ $ σ _{\hat{\boldsymbol{X}}_1} $ $ σ_ {\hat{\boldsymbol{X}}_2} $ LTLS算法 5.012 551 9.994 964 0.039 9 0.051 9 WTLS算法 5.012 551 9.994 964 0.039 9 0.051 9 为了进一步验证LTLS算法的正确性,首先采用模拟的1 000组数据计算LTLS和WTLS参数解的均值$ {\rm{avg}} (\hat {\boldsymbol{X}} _1) 和 {\rm{avg}} (\hat {\boldsymbol{X}} _2) $,并将参数解均值代入式(17),求得LTLS参数解的协因数阵估值$ {\boldsymbol{Q}}(\hat {\boldsymbol{X}} )$,然后利用参数真值求得精确的参数协因数阵$ \overline{\boldsymbol{Q}}(\hat{\boldsymbol{X}})={\boldsymbol{E}}_{{\boldsymbol{X}}}^{\mathrm{T}} \boldsymbol{E}_{{\boldsymbol{X}}} /(m-n) , {\boldsymbol{E}}_{{\boldsymbol{X}}}=\left[\begin{array}{ll} \hat{{\boldsymbol{X}}}_{1}^{(j)}-5 & \hat{{\boldsymbol{X}}}_{2}^{(j)}-10 \end{array}\right] $,计算结果见表 2。1 000组数据的LTLS参数解和WTLS参数解与参数真值偏差的统计分析见图 1和图 2。
表 2 1000组实验的参数解均值和协因数阵Table 2. Average Parameter Values and Co⁃variance Matrix in 1 000 Experiments算法 参数解均值 协因数阵 $ {\rm{avg}} ( \hat{\boldsymbol{X}}_1) $ $ {\rm{avg}} ( \hat{\boldsymbol{X}}_2) $ $ {\boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $ $ \bar{ \boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $ LTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9 −0.005 1 0.007 3 −0.004 9 0.007 2 WTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9 −0.005 1 0.007 3 −0.004 9 0.007 2 由表 2、图 1和图 2可以看出,LTLS算法与WTLS算法的统计结果完全一致,说明在每次实验中两种算法所求参数解均一致,验证了LTLS算法的正确性。同时两种计算协因数阵的方法结果非常相近,验证了参数协因数阵一阶近似估计公式(17)的有效性[17]。
3.2 实验2
为分析LTLS算法的计算效率,设计通用EIV模型中待估计量个数在不同的数量级情况,采用LTLS算法和WTLS算法计算100组模拟数据的平均迭代次数N、平均解算时间t和减少比例(LTLS算法较WTLS算法减少的平均解算时间与WTLS算法平均解算时间之比),结果见表 3。
表 3 LTLS算法和WTLS算法计算效率的比较Table 3. Comparison of Computational Efficiency Between LTLS Algorithm and WTLS Algorithm待估量数量 NLTLS NWTLS tLTLS tWTLS 减少比例/% 10 5.18 4.5 0.224 ms 0.191 ms − 100 5.04 6.36 0.681 ms 0.724 ms 5.9 1 000 5 6.75 0.033 s 0.044 s 25.0 10 000 5 7.5 2.681 s 3.909 s 31.4 从表 3可以看出,两种算法每次迭代的平均时间基本一致;当模型估计量数量较少时,两种算法的效率基本相当,随着估计量的数量级逐渐增大,LTLS算法的效率高于WTLS算法。原因在于GHM按泰勒级数展开后,仅包含常数项、一阶项(二阶及以上项全部为零),LTLS算法将二阶项纳入常数项,减小了线性化引起的模型误差,迭代计算收敛更快,迭代次数减少,使得计算效率提高。
3.3 实验3
本文采用的摄影测量实例示意图如图 3所示,由3个地面摄像机S1、S2和S3拍摄两个目标点P1和P2组成,相机主距f=100 mm,距离l1、l2、l3、l4、l5、l6、y1、y2的观测值和中误差见表 4。
表 4 距离观测值及其中误差Table 4. Distance Observations and Standard Deviations统计项 l1/mm l2/mm l3/mm l4/mm l5/mm l6/mm y1/m y2/m 观测值 14.1 16.6 6.1 7.1 22.1 26.3 10.0 8.0 中误差 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 根据图 3可得到误差方程:
$$ \left\{\begin{array}{l} l_{1} x_{2}-f x_{1}=0 \\ l_{2} x_{4}-f x_{3}=0 \\ l_{3} x_{2}+f y_{1}+f x_{1}=0 \\ l_{4} x_{4}+f y_{1}+f x_{3}=0 \\ l_{5} x_{2}-f y_{1}-f y_{2}+f x_{1}=0 \\ l_{6} x_{4}-f y_{1}-f y_{2}+f x_{3}=0 \end{array}\right. $$ (18) 构建通用EIV模型来估计点P1和点P2的坐标,由误差方程可得:
$$ \begin{array}{l} \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0\\ { - f}&0\\ { - f}&0\\ { - f}&{ - f}\\ { - f}&{ - f} \end{array}} \right],\mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} { - f}&{{l_1}}&0&0\\ 0&0&{ - f}&{{l_2}}\\ f&{{l_3}}&0&0\\ 0&0&f&{{l_4}}\\ f&{{l_5}}&0&0\\ 0&0&f&{{l_6}} \end{array}} \right],\\ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {{y_1}}\\ {{y_2}} \end{array}} \right],\mathit{\boldsymbol{x}} = \left[ {\begin{array}{*{20}{l}} {{x_1}}\\ {{x_2}}\\ {{x_3}}\\ {{x_4}} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}} \right] \end{array} $$ (19) 由式(19)可知矩阵A不含有随机误差,则该矩阵的改正数矩阵为零矩阵。采用LTLS算法和WTLS算法解算,设置阈值为1×10-8,结果见表 5和表 6。两种方法所得坐标估值和距离观测值估值完全一致,该实例表示为通用EIV模型时系数矩阵中待估计量较少,所以两个算法收敛速度相差不大。
表 5 点P1和点P2的坐标估值/mTable 5. Coordinate Estimates of P1 and P2 /m算法 坐标估值 $ \hat x_1 $ $ \hat x_2 $ $ \hat x_3 $ $ \hat x_4 $ LTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9 WTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9 表 6 距离观测值估值Table 6. Estimation of Distance Observations算法 $ \hat l_1 $/mm $ \hat l_2 $/mm $ \hat l_3 $/mm $ \hat l_4 $/mm $ \hat l_5 $5/mm $ \hat l_6 $/mm $ \hat y_1 $/m $ \hat y_2 $/m LTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8 WTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8 4 结语
本文将通用EIV函数模型展开后的二阶项纳入模型的常数项,将通用EIV模型表示为线性形式的GHM,推导出通用EIV模型的线性化整体最小二乘算法和近似精度估计公式。实验结果表明,通用EIV模型的LTLS算法与WTLS算法结果一致,验证了该算法的正确性。此外,LTLS算法估计精度公式和WTLS估计精度公式均为一阶近似精度,因此两种算法参数的估计精度相同。当通用EIV模型的待估量数量较多时,LTLS算法比WTLS计算效率更高,在处理海量数据时更具有优势。
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20230244
-
表 1 实验影像细节信息表
Table 1 Detail Information of Experimental Images
像对编号 影像类型 传感器/数据源 分辨率/m 获取时间 影像尺寸/像素 1 参考影像 Google Earth 2.5 2005-07 13 701×12 432 待配准影像 Gaofen-7 MUX 3.2 2022-03 8 966×10 031 2 参考影像 Google Earth 2.5 2005-04 15 818×14 158 待配准影像 Gaofen-7 MUX 3.2 2022-08 8 915×10 233 3 参考影像 Google Earth 17 2022-09 9 477×8 803 待配准影像 Ziyuan-1 IRS 15 2023-06 8 044×8 053 4 参考影像 Google Earth 17 2022-09 9 455×9 471 待配准影像 Ziyuan-1 IRS 15 2023-06 8 044×8 051 5 参考影像 TerraSAR-X SM 3 2017-09 10 831×9 552 待配准影像 Gaofen-2 PAN 0.8 2016-11 29 200×27 620 6 参考影像 TerraSAR-X SM 3 2017-09 21 339×19 385 待配准影像 Ziyuan-3 PAN 2 2017-12 24 505×23 998 表 2 对比实验定量结果表
Table 2 Quantitative Results of the Comparison Experiments
像对编号 评价指标 本文方法 局部校正+SIFT 局部校正+LGHD 局部校正+RIFT 1 正确匹配数/点对 15 310 2 399 11 482 15 287 2 5 556 793 4 619 5 645 3 2 844 623 2 180 2 836 4 2 951 失败 2 220 2 998 5 1 295 失败 973 1 321 6 5 869 失败 3 855 5 758 1 RMSE/像素 0.84 1.17 1.03 0.89 2 0.83 0.99 0.97 0.94 3 0.56 1.06 0.89 0.62 4 0.54 失败 0.86 0.53 5 1.19 失败 1.54 1.38 6 1.45 失败 1.71 1.68 1 运行时间/s 52.32 97.21 124.93 190.17 2 57.33 105.51 173.11 212.78 3 9.09 11.34 34.63 48.43 4 10.21 失败 42.89 64.94 5 16.13 失败 47.06 61.45 6 61.67 失败 208.73 257.06 -
[1] 王密, 仵倩玉. 面向星群的遥感影像智能服务关键问题[J]. 测绘学报, 2022, 51(6): 1008-1016. Wang Mi, Wu Qianyu. Key Problems of Remote Sensing Images Intelligent Service for Constellation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1008-1016.
[2] 贾永红, 李德仁. 多源遥感影像像素级融合分类与决策级分类融合法的研究[J]. 武汉大学学报(信息科学版), 2001, 26(5): 430-434. Jia Yonghong, Li Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
[3] Fan Z L, Liu Y X, Liu Y X, et al. 3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery[J]. Remote Sensing, 2022, 14(3): 478.
[4] 张力, 刘玉轩, 孙洋杰, 等. 数字航空摄影三维重建理论与技术发展综述[J]. 测绘学报, 2022, 51(7): 1437-1457. Zhang Li, Liu Yuxuan, Sun Yangjie, et al. A Review of Developments in the Theory and Technology of Three-Dimensional Reconstruction in Digital Aerial Photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1437-1457.
[5] 王蒙蒙, 叶沅鑫, 朱柏, 等. 基于空间约束和结构特征的光学与SAR影像配准[J]. 武汉大学学报(信息科学版), 2022, 47(1): 141-148. Wang Mengmeng, Ye Yuanxin, Zhu Bai, et al. An Automatic Registration Method for Optical and SAR Images Based on Spatial Constraint and Structure Features[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 141-148.
[6] 姚永祥, 张永军, 万一, 等. 顾及各向异性加权力矩与绝对相位方向的异源影像匹配[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1727-1736. Yao Yongxiang, Zhang Yongjun, Wan Yi, et al. Heterologous Images Matching Considering Anisotropic Weighted Moment and Absolute Phase Orientation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1727-1736.
[7] 刘伟玉, 万一, 张永军, 等. 基于相位均匀卷积的LiDAR深度图与航空影像高效匹配方法[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1309-1317. Liu Weiyu, Wan Yi, Zhang Yongjun, et al. An Efficient Matching Method of LiDAR Depth Map and Aerial Image Based on Phase Mean Convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1309-1317.
[8] 张永军, 洪玮辰, 万一. 利用距离变换模型进行卫星影像与激光点云精配准[J]. 武汉大学学报 ( 信息科学版), 2023, 48(3): 339-348. Zhang Yongjun, Hong Weichen, Wan Yi. Registration of HRSI and LiDAR Point Clouds Based on Distance Transformation Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 339-348.
[9] Fan Z L, Wang M, Pi Y D, et al. A Robust Oriented Filter-Based Matching Method for Multisource, Multitemporal Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4703316.
[10] Ye Y X, Bruzzone L, Shan J, et al. Fast and Robust Matching for Multimodal Remote Sensing Image Registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9059-9070.
[11] Fan Z L, Zhang L, Liu Y X, et al. Exploiting High Geopositioning Accuracy of SAR Data to Obtain Accurate Geometric Orientation of Optical Satellite Images[J]. Remote Sensing, 2021, 13(17): 3535.
[12] Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[13] Aguilera C A, Sappa A D, Toledo R. LGHD: A Feature Descriptor for Matching Across Non-linear Intensity Variations[C]//2015 IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, 2015.
[14] Li J Y, Hu Q W, Ai M Y. RIFT: Multi-modal Image Matching Based on Radiation-Variation Insensitive Feature Transform[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2019,29: 3296-3310.
[15] Zhang J, Ma W P, Wu Y, et al. Multimodal Remote Sensing Image Registration Based on Image Transfer and Local Features[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1210-1214.
[16] Ye Y X, Tang T F, Zhu B, et al. A Multiscale Framework with Unsupervised Learning for Remote Sensing Image Registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622215.
[17] 王密, 杨博, 李德仁, 等. 资源三号全国无控制整体区域网平差关键技术及应用[J]. 武汉大学学报(信息科学版), 2017, 42(4): 427-433. Wang Mi, Yang Bo, Li Deren, et al. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 427-433.
[18] 储光涵, 纪松, 董杨, 等. 高分七号卫星影像几何定位平面精度初步验证[J]. 测绘地理信息, 2023, 48(5): 49-54. Chu Guanghan,Ji Song,Dong Yang,et al.Preliminary Verification of Geometric Positioning Plane Accuracy of GF-7 Satellite Image[J]. Journal of Geomatics, 2023, 48(5): 49-54.
[19] Rosten E, Porter R, Drummond T. Faster and Better: A Machine Learning Approach to Corner Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119.
[20] Grodecki J, Dial G. Block Adjustment of High-Resolution Satellite Images Described by Rational Polynomials[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 59-68.
[21] Pi Y D, Wang M, Yang B, et al. Robust Camera Distortion Calibration via Unified RPC Model for Optical Remote Sensing Satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5627815.
-
期刊类型引用(6)
1. 杨根新,王友昆,谢正明. 基于广义EIV模型的矿区高程异常的无缝推估算法. 工程勘察. 2023(08): 46-51 . 百度学术
2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 . 必应学术
3. 翁烨,陈丽,王岩. 线性化通用EIV平差模型的正则化解法. 勘察科学技术. 2023(05): 1-5 . 百度学术
4. 戴中东,孟良,高永攀,项伟. 加权整体最小二乘坐标匹配算法在机场道面测量中的应用. 测绘地理信息. 2022(02): 61-66 . 百度学术
5. 翁烨,邵德盛,甘淑. 线性化通用EIV平差模型的岭估计解法. 全球定位系统. 2022(02): 82-89 . 百度学术
6. 翁烨,邵德盛. 病态加权总体最小二乘的广义岭估计解法. 全球定位系统. 2021(06): 84-89 . 百度学术
其他类型引用(2)