基于MaxEnt结合粒子群优化的陇南市山洪灾害空间分布预测研究

Spatial Distribution Prediction of Flash Flood Disaster in Longnan City Based on Particle Swarm Algorithm Combined with MaxEnt Model

  • 摘要: 山洪是山区河道水位突然上涨所引发的自然灾害,具有瞬时性、破坏性大等特点。近年来,甘肃省陇南市山洪灾害频发,严重威胁到当地人民的生命财产安全,对该区域进行山洪灾害风险评价刻不容缓。运用MaxEnt结合粒子群优化算法,基于调查的834个山洪灾害点和与灾害相关的32个致灾因子,在探讨主要致灾因子的基础上进行研究区山洪灾害易发性评价,并结合当前(2021—2040年)和未来(2041—2060年、2061—2080年、2081—2100年)4期气候数据的不同情景模式,预测了该区研究期间山洪灾害潜在易发区空间分布格局。结果表明,各期研究结果的受试者工作特征曲线的曲线下面积均大于0.85,表明所提方法的研究结果精度较高;研究区的主要致灾因子为最干月降水量、昼夜温差月均值、降水量变异系数、最暖月最高温、土地利用、距河流的距离、土壤质地、剖面曲率、海拔、地形起伏度;研究区不同时期山洪灾害中高易发区集中分布于武都区、文县和宕昌县部分地区,与当前时期相比,未来3个时期的模拟结果均体现为减少趋势。

     

    Abstract:
    Objectives Flash floods are natural disasters caused by sudden rise in water levels in mountainous rivers, which are characterized by instantaneity and great destructiveness. In recent years, the frequent occurrence of flash floods in Longnan city, Gansu province, has posed a serious threat to the safety of local people's lives and property, thus it is urgent to carry out a risk assessment of flash floods in this region.
    Methods This study takes Longnan city as the study area, and utilizes the MaxEnt model combining with the particle swarm algorithm to evaluate the vulnerability of study area based on 834 flash flood hazard points investigated and 32 disaster-causing factors. It also predicts the spatial pattern changes and potential mass migration trends of the future flash flood vulnerability areas based on three periods of climate data from the current period (2021—2040) and the future period (2041—2060, 2061—2080, 2081—2100).
    Results and Conclusions The area under receiver operating characteristic curve of the results of the study in each period is above 0.85, which indicates that the precision of the results of the method is good. The main cause factors in this study area are driest month precipitation, monthly mean diurnal temperature difference, coefficient of variation of precipitation, warmest month maximum temperature, land use, distance from the river, soil texture, profile curvature, elevation, and topographic relief. The flash flood-prone areas in the study area varies in different periods, but are mainly distributed in Wudu District, Wen County and Tanchang County, and the simulation results for the three future periods (2041—2060, 2061—2080, 2081—2100) reflected a decreasing trend compared with the current period (2021—2040).

     

/

返回文章
返回