Multi-method Early Identification and Route Optimization of Vulnerable Geological Environment Hazards on Mountainous Highways
-
摘要: 山区地质灾害直接关系到高速公路建设及后期运营效果,如何提前发现和识别出重大潜在危险源,并采取相应措施,已成为山区高速公路选线集中关注的焦点与难点。采用多技术相互融合,对G4216线沿江高速公路新场沟段地质灾害进行多层次调查及分析,并给出路线优化建议。在研究过程中,首先应用多时相高精度光学遥感影像对规划线路范围内的地质灾害隐患进行初步解译及分析,随后对影响路线走向的重点区域,采用小基线集合成孔径雷达干涉测量(synthetic aperture radar interferometry,InSAR)开展地表定量探测和分析评价,最后通过机载激光雷达测量技术(light detection and ranging,LiDAR),对地质灾害高风险区进行详细探查。光学遥感共识别出地质灾害隐患40处,其中10处隐患点对高速公路修建具有不同程度的威胁性。InSAR技术共探测出13处具有明显变形的崩滑体隐患点,并发现新场沟左岸有一处巨型变形体,直接威胁规划线路的走向。在此基础上,通过LiDAR技术与实地调查发现此变形体中部多处出现拉裂迹象,上部呈阶梯型错动,变形迹象明显,不宜扰动,应予以绕避。研究结果表明,通过以上多种手段相结合,能够最大限度且快速地探查地质灾害隐患,并给出高速公路路线安全绕避方案,促使高速公路选线技术从粗放化向精细化转变,对高等级公路选线具有较大的借鉴意义和参考价值。
-
关键词:
- 地质灾害 /
- 早期识别 /
- 合成孔径雷达干涉测量 /
- 机载激光雷达测量 /
- 路线优化
Abstract: Objectives: Geological disasters in mountainous areas are directly related to the construction and operation effect of expressway. How to find and identify major potential hazard sources in advance and take corresponding measures has become the focus and difficulty of highway route selection in mountainous areas. Methods: multilevel investigation and analysis of geological hazards in Xinchanggou section of G4216 Expressway are carried out by using multi-technology, and suggestions for route optimization are given.First, multi-temporal high-precision optical remote sensing images are used to interpret and analyze the hidden geological hazards within the planned route in the research process. Second, small baseline subsets InSAR (SBAS ‐InSAR) were used to quantitatively detect and evaluate the surface deformation in the key areas affecting the route direction. Finally, the airborne light detection and ranging (LiDAR) technology is used to conduct detailed exploration of areas with high risk of geological hazards. Results: Optical remote sensing consensus identified 40 hidden geological hazards, 10 of which have different degrees of threat to the construction of expressways. InSAR technology was used to detect a total of 13 hidden points of sliding body with obvious deformation, among which a giant deformed body was found on the left bank of Xinchanggou, which directly threatened the direction of the planned route. On this basis, it was found that the middle part of the deformed body showed signs of pulling cracks through the LiDAR technology and field investigation, and the upper part of the deformed body showed ladder dislocation, and the deformation signs were obvious, which should be avoided. Conclusions: The results show that the combination of the above means can detect the hidden dangers of geological disasters to the maximum extent at great speed. The safe circumvention scheme of expressway route is given, which promotes the transformation of expressway route selection technology from extensive to refined. It is of great reference significance and value to highway route selection. -
-
[1] Xu Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J].Geomatics and Information Science of Wuhan University,2020,45(11):1651-1659(许强.对地质灾害隐患早期识别相关问题的认识与思考[J].武汉大学学报(信息科学版),2020,45(11):1651-1659) [2] Sun Q, Zhang Li, Dong X U, et al. Slope Deformation Prior to Zhouqu,China Landslide from InSAR Time Series Analysis[J]. Remote Sensing of Environment, 2015, 156:45-47.
[3] Dai K, Li Z H, Tomas R, et al.Monitoring Activity at the Dagongbao Mega-landslide (China) Using Sentinel-1 TOPS Time Series Interferometry. Remote Sensing of Environment, 2016, 186:501-503.
[4] Zhang Y, Meng X, Chen G, et al. Detection of Geo-hazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J]. Landslides, 2016, 13(5):1273-1284.
[5] Xu Qiang,LI Wei-le,DONG Xiu-jun,et al. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan:Characteristics and Failure Mecha-nism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628.(许强,李为乐,董秀军,等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11):2612-2628.) [6] Intrieri E, Raspini F, Fumagalli A, et al. The MaoxianLandslide as Seen from Space:Detecting Precursorsof Failure with Sentinel-1 Data[J]. Landslides, 2018, 15(1):123-133.
[7] Jie D, Liao M, Qiang X, et al. Detection and Dis-placement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry:A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240(5):94-109.
[8] LU Huiyan, LI Weile, XU Qiang, et al. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9):1342-1354.(陆会燕,李为乐,许强等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报(信息科学版), 2019, 44(9):1342-1354.) [9] Li Weile, Xu Qiang, Et al.Tracking the Deformation History of Large-Scale Rocky Langslides and Its Enlightenment[J]. Geomatics and Information Science of Wu-han University, 2019, 44(7):1043-1053.(李为乐,许强等.大型岩质滑坡形变历史回溯及其启示[J].武汉大学学报(信息科学版), 2019, 44(7):1043-1053.) [10] Jie D, Liao M, Qiang X, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry:A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240(5):94-109.
[11] Xie M, Huang J X, Wng L W, et al. Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir[J]. Environmental earth sciences, 2016,75(8).
[12] Zhang Lu, Liao Mingsheng, Dong Jie, et al. Ear-ly Dectection of Landslide Hazards in MountainousAreas of West China Using Time Series SAR Inter-ferometry-A Case Study of Danba, Sichuan[J].Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049.(张路,廖明生,董杰,等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报(信息科学版), 2018, 43(12):2039-2049.) [13] Liao Mingsheng, Zhang Lu, Shi Xuguo, et al.Methodology and Practice of Landslide DeformationMonitoring with SAR Remote Sensing[M]. Bei-jing:Science Press, 2017.(廖明生,张路,史绪国,等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017.) [14] Li Xianju. Complex Geological Environment Landslide Recognition Based on LiDAR Technology[D]. Wuhan:China University of Geosciences, 2012.(李显巨.基于LiDAR技术的复杂地质环境区滑坡识别研究[D].武汉:中国地质大学(武汉), 2012.) [15] Booth A M, Roering J J, Perron J T. Automated landslide mapping using spectral analysis and high-resolution topographic data:Puget Sound lowlands, Washington, and Portland Hills,Oregon[J]. Geomorphology, 2009. 109(3-4):132-147.
[16] Catani F, Casagli N, Ermini L, et al. Landslide hazard and risk mapping at catchment scale 2005 Arno River basin[J]. Landslides, 2005. 2(4):329-342.
[17] Glenn N F, Streutker D R, Chadwick D J, et al. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity[J]. Geomorphology, 2006,73(1-2):131-148.
[18] Haneberg W C, Cole W F, Kasali G. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA[J]. Bulletin of Engineering Geology and the Environment, 2009,68(2):263-276.
[19] Kasai M, Ikeda M, Asahina T, et al. LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan[J]. Geomorphology, 2009.113(1-2):57-69.
[20] Mckean J, Roering J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry[J]. Geomorphology, 2004,57(3-4):331-351.
[21] Metternicht G, Hurni L, Gogu R. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J]. Remote Sensing of Environment, 2005,98(2-3):284-303.
[22] Schulz W H. Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle,Washington[J]. Engineering Geology, 2007,89(1-2):67-87.
[23] Van Den Eeckhaut M, Poesen J, Verstraeten G, et al. Use of LIDAR-derived images for mapping old landslides under forest[J]. Earth Surface Processes and Landforms, 2007,32(5):754-769.
[24] Xu Qiang, Dong Xiujun, Li Weile. IntegratedSpace-Air-Ground Early Detection, Monitoring andWarning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.(许强,董秀军,李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报(信息科学版), 2019, 44(7):957-966.) [25] Zhuo Baoxi. Remote Sensing Interpretation&Appli-cation of Geology Engineering[M]. Beijing:ChinaRailway Publishing House, 2011.(卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社, 2011.) [26] Gagon H. Remote Sensing of Landslides Hazards onQuick Clays of Eastern Canada[C]. The 10th Inter-national Symposium of Remote Sensing of Enviro-ment, Environmental Research Institute of Michigan, Ann Arbor, USA, 1975.
[27] Mcdonald H C, Grubbs R S. Landsat ImageryAnalysis:An Aid for Predicting Landslide ProneAreas for Highway Construction[C]. NASA EarthResource Symposium, Houston, Texas, USA, 1975.
[28] Sauchyn D J, Trench N R. Landsat Applied to Land-slide Mapping[J]. Photogrammetric Engineeringand Remote Sensing, 1978, 44(6):735-741.
[29] Stephens P R. Use of Satellite Data to Map Land-slide[C]. The 9th Asian Conference on RemoteSensing, Bangkok, Thailand, 1988.
[30] Nichol J E, Shaker A, Wong M S. Application ofHigh Resolution Stereo Satellite Images to DetailedLandslide Hazard Assessment[J]. Geomorphology, 2006, 76(1-2):68-75.
[31] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience&Remote Sensing, 2002, 40(11):2375-2383.
[32] Zhang Y, Heresh F, Falk A. Small baseline InSAR time series analysis:Unwrapping error correction and noise reduction-ScienceDirect[J]. Computers&Geosciences, 2019.133(C):104331-104331.
[33] Liu Guoxiang,Chen Qiang,Luo Xiaojun,et al.Principles and applications of InSAR[M]. Beijing:Science Press,2019.(刘国祥,陈强,罗小军,等. InSAR原理与应用[M].北京:科学出版社,2019.) [34] Zhu Jianjun, Li Zhiwei, Hu Jun. Research progress and methods of insar for deformation monitoring[J]. Acta Geodaetica etCartographica Sinica,2017,46(10):1717-1733.(朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733.) [35] Dong Xiujun, Deng Bo, Yuan Feiyun, et al. Application of Aerial Remote Sensing in Geological Hazards:Current Situation and Prospects[J]. Geomatics and Information Science of Wuhan University, 2022, DOI:10.13203/j.whugis20220151.(董秀军,邓博,袁飞云,等.航空遥感在地质灾害领域的应用:现状与展望[J].武汉大学学报(信息科学版), 2022, DOI:10.13203/j.whugis20220151.) [36] Li X, Cheng X, Chen W, et al. Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms[J]. Remote Sensing, Multidisciplinary Digital Publishing Institute, 2015, 7(8):9705-9726.
[37] Görüm T. Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data[J]. Engineering Geology, 2019, 258:105155.
计量
- 文章访问数: 282
- HTML全文浏览量: 32
- PDF下载量: 58