Estimation and Analysis of Net Ecosystem Carbon Sink Considering the Topographical Correction
-
摘要: 净生态系统生产力(NEP)是衡量陆地生态系统碳汇的重要指标,使用高分辨率影像并考虑地形效应的影响是精准计算NEP的必然选择,山地地区受地形的影响尤为显著。准确计算陆地碳汇对于区域碳收支及土地利用类型结构调控具有重要作用。本文以湖北省为研究区域,基于CASA及GSMSR模型计算碳汇NEP,并从气象因子地形校正及地表面积校正两方面优化NEP计算结果;对比了地形校正前后NEP的差异;并分析了区域内NEP的时空演变特征,结果表明:(1)地形校正可以有效提升NEP计算的精度,对比全国通量站点数据,绝对误差(MAE)由校正前153.69 gC·m-2·a-1降低为150.73 gC·m-2·a-1,湖北省全年的NEP总量为2121万吨。(2)以往研究结果低估了林地的碳汇量,经过地形校正,林地NEP相比于校正前增加约22%,其次为草地,其他类型用地相比校正前增加较少。(3)地形校正对高海拔和地形起伏较大区域的优化效果较为明显,能够明显改善NEP计算精度。校正后空间自相关趋势有所降低,Moran’s I指数由1.24降为1.18,春秋两季地形校正后重心明显西移。Abstract: Objectives: Net ecosystem productivity (NEP) is a key indicator of carbon sinks in terrestrial ecosystems. To accurately estimate NEP, it is essential to use high-resolution images and account for topographic effects, especially in mountainous areas, which have important implications for regional carbon budget and land use structure. Methods: We calculates NEP based on CASA and GSMSR models for Hubei Province. And then we optimize the results by applying two types of topographic correction: meteorological factor correction and surface area correction. We compare the NEP values before and after correction and analyze their spatiotemporal pattern. Results: The results show that: (1) Topographic correction can effectively improve the accuracy of NEP calculation. Compared with the data of national flux stations, the mean absolute error (MAE) decreased from 153.69 gC·m-2·a-1 before correction to 150.73 gC·m-2·a-1 after correction, and the total NEP of Hubei province was 21.21 million tons. (2) Previous studies underestimated the carbon sequestration of forest land. After topographic correction, the NEP of forest land increased by about 22% compared to before correction, followed by grassland, while other land use types showed less increase after topographic correction. (3) The topographic correction significantly improves the accuracy of NEP in areas with high altitude and large terrain variations. The spatial autocorrelation trend also decreases after correction, as indicated by the reduction of Moran’s I index from 1.24 to 1.18. Moreover, the topographic correction causes a noticeable westward shift of the center of gravity in spring and autumn. Conclusions: Compared with before topographic correction, the NEP results after correction have higher accuracy, and the carbon sink distribution of different land use types also differs. But because the influence of terrain on carbon sink estimation is reflected in multiple aspects. Hence, in future work, we will continue to explore the influence of topography on vegetation factors, meteorology, and remote sensing images, to improve the simulation accuracy of the model.
-
Keywords:
- CASA /
- GSMSR /
- NEP /
- topographic correction /
- Hubei Province /
- carbon sink
-
-
[1] Fan Xing, Qin Yuanyuan, Gao Xiang. Interpretation of the Main Conclusions and Suggestions of IPCC AR6 Working Group Ⅰ Report[J]. Environmental Protection, 2021, 49(Z2):44-48(樊星,秦圆圆,高翔. IPCC第六次评估报告第一工作组报告主要结论解读及建议[J].环境保护, 2021, 49(Z2):44-48) [2] Yang Yuanhe, Shi Yue, Sun Wenjuan, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Scientia Sinica (Vitae), 2022, 52(4):534-574(杨元合,石岳,孙文娟,等.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献.中国科学:生命科学, 2022, 52(4):534-574) [3] Friedlingstein P, O'Sullivan M, Jones M W, et al. Global Carbon Budget 2020[J]. Earth System Science Data, 2020, 12(4):3269-3340
[4] Wang Y, Wang X, Wang K, et al. The size of the land carbon sink in China[J]. Nature, 2022, 603(7901):E7-E9.
[5] Chen J M, Ju W, Ciais P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink[J]. Nature Communications, 2019, 10:4259
[6] Zhang D, Zhao Y, Wu J. Assessment of carbon balance attribution and carbon storage potential in China's terrestrial ecosystem[J]. Resources, Conservation and Recycling, 2023, 189:106748.
[7] Cao S, Yi H, Zhang L, et al. Spatiotemporal dynamics of vegetation net ecosystem productivity and its response to drought in Northwest China[J]. GIScience&Remote Sensing, 2023, 60(1):2194597.
[8] Piao S, He Y, Wang X, et al. Estimation of China's terrestrial ecosystem carbon sink:Methods, progress and prospects[J]. Science China-Earth Sciences, 2022, 65(4):641-651
[9] Li C, Liu Y, Zhu T, et al. Considering time-lag effects can improve the accuracy of NPP simulation using a light use efficiency model[J]. Journal of Geographical Sciences, 2023, 33(5):961-979.
[10] Zhang C, Zhen H, Zhang S, et al. Dynamic changes in net primary productivity of marsh wetland vegetation in China from 2005 to 2015[J]. Ecological Indicators, 2023, 155:110970.
[11] Liang L, Geng D, Yan J, et al. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China[J]. Remote Sensing, 2022, 14(8):1902.
[12] Yun Yinjuan, Zhao Jun. Spatial Pattern of Vegetation Carbon Sinks Based on MODIS-NDVI Data:A Case Study in Shiyang River Basin, China[J]. Mountain Research, 2018, 36(4):644-653(贠银娟,赵军.基于MODIS-NDVI数据的植被碳汇空间格局研究--以石羊河流域为例[J].山地学报, 2018, 36(4):644-653) [13] Yuan Y, Shi X, Zhao Z. Land Use Types and Geomorphic Settings Reflected in Soil Organic Carbon Distribution at the Scale of Watershed[J]. Sustainability, 2018, 10(10):3490
[14] He Q, Zeng C, Xie P, et al. An assessment of forest biomass carbon storage and ecological compensation based on surface area:A case study of Hubei Province, China[J]. Ecological Indicators, 2018, 90:392-400
[15] Qiao X J, Jiang Q H, Xu Y Z, et al. Natural vegetation in Hubei Province:history, distribution pattern, and vegetation types. Sci Sin Vitae, 2021, 51:254-263(乔秀娟,姜庆虎,徐耀粘,等.湖北自然植被概况:植被研究历史、分布格局及其群落类型[J].中国科学:生命科学, 2021, 51(3):254-263) [16] Niu Quanfu, Liu Mingzhi, Zhang Man, et al. Vegetation Dynamic Change and Its Response to Climate and Topography in Altay Region of Xinjiang in Recent 20 Years. Geomatics and Information Science of Wuhan University, 2023, 48(9):1522-1530(牛全福,刘明志,张曼,等.近20年来新疆阿勒泰地区植被动态变化及其对气候与地形的响应[J].武汉大学学报(信息科学版), 2023, 48(9):1522-1530) [17] Li Xianfeng, Yuan Zhengguo, Deng Weihua, et al. Spatial downscaling methods for the 2-meter air temperature grid data based on multiple machine learning models. Remote Sensing for Natural Resources, 2023, 35(1):57-65(李显风,袁正国,邓卫华,等.融合多种机器学习模型的2 m气温空间降尺度方法[J].自然资源遥感, 2023, 35(1):57-65) [18] Li X, Du H, Zhou G, et al. Spatiotemporal patterns of remotely sensed phenology and their response to climate change and topography in subtropical bamboo forests during 2001-2017:a case study in Zhejiang Province, China[J]. GIScience&Remote Sensing, 2023, 60(1):2163575.
[19] Zhao C, Liu J, Mou W, et al. Topography shapes the carbon allocation patterns of alpine forests[J]. Science of the Total Environment, 2023, 898:165542.
[20] Lin N, Li J, Jiang R, et al. Quantifying the Spatiotemporal Variation of NPP of Different Land Cover Types and the Contribution of Its Associated Factors in the Songnen Plain[J]. Forests, 2023, 14(9):1841.
[21] Qin Huiping, Yi Weining, Huang Honglian, et al. Simulation of the Irradiacne Changing with the Temporal and Spatial Distribution on the Terrain Surface. Geomatics and Information Science of Wuhan University, 2011, 36(7):793-796(秦慧平,易维宁,黄红莲,等.山区地表太阳辐照度随时空变化的模拟分析[J].武汉大学学报(信息科学版), 2011, 36(7):793-796) [22] Xia Li, Lin Aiwen, Qin Wenmin, et al. Spatio-temporal Characteristics of Solar Radiation and Its Driving Factors in Hubei Province During 1980-2013. Geomatics&Spatial Information Technology, 2019, 42(4):29-33+37(夏丽,林爱文,覃文敏,等. 1980-2013年湖北省地表太阳辐射时空特征及其驱动因子分析[J].测绘与空间地理信息, 2019, 42(4):29-33+37) [23] Wang W, Yin G, Zhao W, et al. Spatial Downscaling of MSG Downward Shortwave Radiation Product Under Clear-Sky Condition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, PP:1-9.
[24] Jiang Yun, Li Tongwen, Cheng Qing, et al. Air Temperature Estimation in the Yangtze River Economic Zone Using Geographically and Temporally Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2):325-332(江芸,李同文,程青,等.利用时空神经网络模型的长江经济带气温反演[J].武汉大学学报(信息科学版), 2023, 48(2):325-332) [25] Nie Lei, Shu Hong, Liu Yan. Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1553-1559(聂磊,舒红,刘艳.复杂地形地区月平均气温(混合)地理加权回归克里格插值[J].武汉大学学报(信息科学版), 2018, 43(10):1553-1559) [26] Xie X, Li A, Guan X, et al. A practical topographic correction method for improving Moderate Resolution Imaging Spectroradiometer gross primary productivity estimation over mountainous areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102522.
[27] Chen R, Yin G, Zhao W, et al. TCNIRv:Topographically Corrected Near-Infrared Reflectance of Vegetation for Tracking Gross Primary Production Over Mountainous Areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4409310.
[28] Xie X, Tian J, Wu C, et al. Long-term topographic effect on remotely sensed vegetation indexbased gross primary productivity (GPP) estimation at the watershed scale[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108:102755.
[29] Bao G, Bao Y, Qin Z, et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 46:84-93.
[30] Blakemore R J. Non-Flat Earth Recalibrated for Terrain and Topsoil[J]. Soil Systems, 2018, 2(4):64
[31] He Q, Tan S, Xie P, et al. Re-assessing Vegetation Carbon Storage and Emissions from Land Use Change in China Using Surface Area[J]. Chinese Geographical Science, 2019, 29(4):601-613.
[32] Liu Weiqiu, Yu Shixiao, Wang Yongfan, et al. Estimation of the Forest Biomass with 3-Dimensional Model at Heishiding Nature Reserve, Guangdong[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004(4):66-69(刘蔚秋,余世孝,王永繁,等.广东黑石顶森林生物量的三维估算[J].中山大学学报(自然科学版), 2004(4):66-69) [33] Liu Xingyu. Research on calculation method of surface area and its application in the Hengduan Mountains[D]. Taiyuan:Taiyuan Univeristy of Technology, 2022(刘星雨.地表面积计算方法及其在横断山区的应用研究[D].太原:太原理工大学, 2022) [34] Xie X, Chen J M, Gong P, et al. Spatial Scaling of Gross Primary Productivity Over Sixteen Mountainous Watersheds Using Vegetation Heterogeneity and Surface Topography[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(5):e2020JG005848.
[35] Fan Zide, Li Jialin, Deng Min. An Adaptive Inverse-Distance Weighting Spatial Interpolation Method with the Consideration of Multiple Factors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):842-847(樊子德,李佳霖,邓敏.顾及多因素影响的自适应反距离加权插值方法[J].武汉大学学报(信息科学版), 2016, 41(6):842-847) [36] He Qian, Wang Ming, Liu Kai. Spatial Interpolation of Air Temperature Based on Machine Learning[J]. Plateau Meteorology, 2022, 41(3):733-748(贺倩,汪明,刘凯.基于机器学习的气温要素空间插值[J].高原气象, 2022, 41(3):733-748) [37] Xu Shan, Zou Bin, Wang Min, et al. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1642-1650(许珊,邹滨,王敏,等. PM2.5浓度空间估算的神经网络与克里格方法对比[J].武汉大学学报(信息科学版), 2020, 45(10):1642-1650) [38] Xie P, Liu Y, He Q, et al. An Efficient Vector-Raster Overlay Algorithm for High-Accuracy and High-Efficiency Surface Area Calculations of Irregularly Shaped Land Use Patches[J]. ISPRS International Journal of Geo-Information, 2017, 6(6):156
[39] Chen Y, Feng X, Fu B, et al. Improved Global Maps of the Optimum Growth Temperature, Maximum Light Use Efficiency, and Gross Primary Production for Vegetation[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(4):e2020JG005651
[40] Zhu Wenquan, Pan Yaozhong, He Hao, et al. Simulation of maximum light use efficiency of typical vegetation in China[J]. Chinese Science Bulletin, 2006(6):700-706(朱文泉,潘耀忠,何浩,等.中国典型植被最大光利用率模拟[J].科学通报, 2006(6):700-706) [41] Yu G, Zheng Z, Wang Q, et al. Spatiotemporal Pattern of Soil Respiration of Terrestrial Ecosystems in China:The Development of a Geostatistical Model and Its Simulation[J]. Environmental Science&Technology, 2010, 44(16):6074-6080
[42] Shi Zhihua. Spatial-Temporal Simulation of Vegetation Carbon Sink and its Influential Factors Based on CASA and GSMSR Model in Shaanxi Province[D]. Yangling:Northwest A&F University, 2015(石志华.基于CASA与GSMSR模型的陕西省植被碳汇时空模拟及影响因素研究[D].杨凌:西北农林科技大学, 2015) [43] He H, Ge R, Ren X, et al. Reference carbon cycle dataset for typical Chinese forests via colocated observations and data assimilation[J]. Scientific Data, 2021, 8(1):42
[44] Pastorello G, Trotta C, Canfora E, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J]. Scientific Data, 2020, 7
[45] Zhou H, Bao G, Li F, et al. Integration and Comparison of Multiple Two-Leaf Light Use Efficiency Models Across Global Flux Sites[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:3116-3130
[46] Xu Yong, Zhou Qinghua, Dou Shiqing, et al. Spatiotemporal Characteristics of Vegetation Net Primary Productivity in Yangtze River Basin Based on ZGS and Thornthwaite Memorial Models[J]. Bulletin of Soil and Water Conservation, 2022, 42(1):225-232(徐勇,周清华,窦世卿,等.基于ZGS和TW模型的长江流域植被NPP时空演变特征[J].水土保持通报, 2022, 42(1):225-232) [47] Chen Xiaojie, Zhang Changcheng, Zhang Jinting, et al. Analysis of the Spatiotemporal Evolution Patterns of Vegetation Net Primary Productivity and Its Influencing Factors Based on CASA Model--A Case Study of Hubei Province[J]. Research of Soil and Water Conservation, 2022, 29(3):253-261(陈晓杰,张长城,张金亭,等.基于CASA模型的植被净初级生产力时空演变格局及其影响因素--以湖北省为例[J].水土保持研究, 2022, 29(3):253-261) [48] Yang Yanzheng, Ma Yuandan, Jiang Hong, et al. Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006 using Integrated Biosphere Simulator[J]. Acta Ecologica Sinica, 2016, 36(13):3911-3922(杨延征,马元丹,江洪,等.基于IBIS模型的1960-2006年中国陆地生态系统碳收支格局研究[J].生态学报, 2016, 36(13):3911-3922) [49] He Q, Ju W, Dai S, et al. Drought Risk of Global Terrestrial Gross Primary Productivity Over the Last 40 Years Detected by a Remote Sensing-Driven Process Model[J]. Journal of Geophysical Research-Biogeosciences, 2021, 126(6):e2020JG005944
[50] Shao Ping, Yang Jianying, Su Sida. Interpretable Machine Learning:Model, Methods and Pratices[M]. Beijing:China Machine Press, 2021:102-106(邵平,杨健颖,苏思达.可解释机器学习:模型、方法与实践[M].北京:机械工业出版社, 2021:102-106) [51] Chen S, Ma M, Wu S,等. Topography intensifies variations in the effect of human activities on forest NPP across altitude and slope gradients[J]. Environmental Development, 2023, 45:100826. [52] Li Chuanhua, Cao Hongjuan, Fan Yeping, et al. Remote sensing estimation and analysis of net primary productivity (NPP) based on corrected CASA model:A case study of Hexi Corridor[J]. Acta Ecologica Sinica, 2019, 39(5):1616-1626(李传华,曹红娟,范也平,等.基于校正的CASA模型NPP遥感估算及分析--以河西走廊为例[J].生态学报, 2019, 39(5):1616-1626) [53] Qing-Ling S, Xian-Feng F, Yong G, et al. Topographical effects of climate data and their impacts on the estimation of net primary productivity in complex terrain:A case study in Wuling mountainous area, China[J]. Ecological Informatics, 2015, 27:44-54
[54] Yang W, Wang Y, Webb A A, et al. Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China[J]. Science of The Total Environment, 2018, 612:1007-1017.
[55] Zhang Xinghang, Zhang Baiping, Wang Jing, et al. Study on the Relationship between Terrain and Distribution of the Vegetation in Shennongjia Forestry District[J]. Journal of Geoinformation Science, 2020, 22(3):482-493(张兴航,张百平,王晶,等.神农架林区植被分布与地形的关系研究[J].地球信息科学学报, 2020, 22(3):482-493) [56] Chen X F, Chen J M, An S Q, et al. Effects of topography on simulated net primary productivity at landscape scale[J]. Journal of Environmental Management, 2007, 85(3):585-596.
[57] Xiong Xueting, Li Chuanhua, Chen Jiahao. Topographic regulatory role of vegetation response to climate change[J]. Acta Geographica Sinica, 2023, 78(9):2256-2270(熊雪婷,李传华,陈佳豪.植被对气候变化响应的地形调控作用[J].地理学报, 2023, 78(9):2256-2270) [58] Wang Lixia, Zhang Haixu, Liu Zhao, et al. A Coupling Model of Net Primary Productivity Pattern Simulation and Prediction:A case study of Hexi Corridor[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11):1756-1765(王丽霞,张海旭,刘招,等.一种净初级生产力格局模拟及预测耦合模型[J].武汉大学学报(信息科学版), 2021, 46(11):1756-1765) [59] Song Weiwei, Guan Dongsheng, Wang Gang. Influence of terrain on plant biomass estimates by remote sensing:a case study of Guangzhou City,China[J]. Acta Ecologica Sinica, 2012, 32(23):7440-7451(宋巍巍,管东生,王刚.地形对植被生物量遥感反演的影响--以广州市为例[J].生态学报, 2012, 32(23):7440-7451) [60] Wang Fei, Cao Yongqiang, Zhou Shuhan, et al. Estimation of vegetation carbon sink in the Yellow River Basin ecological function area and analysis of its main meteorological elements[J]. Acta Ecologica Sinica, 2023, 43(06):2501-2514(王菲,曹永强,周姝含,等.黄河流域生态功能区植被碳汇估算及其气候影响要素[J].生态学报, 2023, 43(06):2501-2514) [61] Tao J, Wu W, Liu W. Spatial-Temporal Dynamics of Cropping Frequency in Hubei Province over 2001-2015[J]. Sensors, 2017, 17(11):2622
[62] Xie X, Li A. Development of a topographic-corrected temperature and greenness model (TG) for improving GPP estimation over mountainous areas[J]. Agricultural and Forest Meteorology, 2020, 295:71-77.
[63] Su Shengtao, Zeng Yuan, Zhao Dan, et al. Optimization of net primary productivity estimation model for terrestrial vegetation in China based on CERN data[J]. Acta Ecologica Sinica, 2022, 42(4):1276-1289(苏胜涛,曾源,赵旦,等.中国陆地植被净初级生产力估算模型优化与分析--基于中国生态系统研究网络数据[J].生态学报, 2022, 42(4):1276-1289)
计量
- 文章访问数: 196
- HTML全文浏览量: 25
- PDF下载量: 30