Parcel-Scale Crop Type Classification Using Tile-Slice-Based SpatialTemporal Convolutional Networks
-
-
关键词:
- Sentinel-2遥感影像 /
- 地块尺度 /
- 作物类型 /
- 时空卷积网络 /
- 分区分层
Abstract:Objectives: Parcel-based crop classification using multi-temporal satellite images plays a vital role in precision agriculture. However, exploring the multi-scale spatial information for identification of crop types from remote sensing images is a significant challenge. Methods: In this study, a tile-slice-based spatial-temporal method was developed for parcel-scale crop (type) classification using multi-temporal Sentinel-2 images. Central to this approach is the combined use of tile-slice-based representation of parcels in images and a deep spatial-temporal convolutional network. Firstly, spatial tiles were sliced according to crop types and parcels, to produce a tile-slicebased training sample dataset and a tile-slice-based prediction dataset. Then, the deep spatial-temporal convolutional network was established to estimate crop-type probabilities for tile-slice-based prediction dataset. Finally, tile-slicebased probabilities were fused under parcel polygons, to generate the final crop type maps. Results: The proposed method is further discussed and validated through parcel-based time-series crop classifications in the France study area with multi-temporal Sentinel-2 images. The classification results demonstrated great improvements in accuracy scores (0.03, 0.02, 0.02 in overall accuracy, precision and F1, respectively) over comparison methods. Conclusions: Through experiments and discussions, we concluded that: (1) the proposed tile-slice-based spatial-temporal method is effective for parcel-based crop classification using Sentinel-2 image sequences, (2) the spatial division and slice in parcel-scale representation are benefit more for crop type identification of larger and spatially concentrated parcels, (3) the proposed TSST-Net is lightweight but powerful for crop classification. The above experiments and their conclusions will provide new ideas for parcel-based agricultural remote sensing time series analysis.
-
-
[1] CHEN Zhongxin, REN Jianqiang, TANG Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China.[J]. Journal of Remote Sensing,2016,20(5):748-767.(陈仲新,任建强,唐华俊,等.农业遥感研究应用进展与展望[J].遥感学报, 2016, 20(5):748-767.) [2] WU Bingfang, ZHANG Miao, ZENG Hongwei, et al. Agricultural monitoring and early warning in the era of big data.[J]. Journal of Remote Sensing,2016,20(5):1027-1037.(吴炳方,张淼,曾红伟,等.大数据时代的农情监测与预警[J].遥感学报, 2016, 20(5):1027-1037.) [3] ZHOU Y N, LUO J, FENG L, et al. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data[J]. GIScience&Remote Sensing, 2019, 56(8):1170-91.
[4] DONG Jinwei, WU Wenbin, HUANG Jianxi, et al. State of the Art and Perspective of Agricultural Land Use Remote Sensing Information Extraction[J]. Journal of Geo-information Science, 2020, 22(4):772-783.(董金玮,吴文斌,黄健熙,等.农业土地利用遥感信息提取的研究进展与展望[J].地球信息科学学报, 2020, 22(4):772-783.) [5] RUßWURM M, KöRNER M. Self-attention for raw optical satellite time series classification[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 169:421-35.
[6] WU Zhifeng, LUO Jiancheng, SUN Yingwei, et al. Research on Precision Agricultural based on the Spatial-temporal Remote Sensing Collaboration[J].Journal of Geo-information Science, 2020, 22(4):731-742.(吴志峰,骆剑承,孙营伟,等.时空协同的精准农业遥感研究[J].地球信息科学学报, 2020, 22(4):731-742.) [7] QIAN Lisha, JIANG Hao, CHEN Shuisen, et al. Extracting field-scale crop distribution in Lingnan using spatiotemporal filtering of Sentinel-1 time-series data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022,38(5):158-166.(钱丽沙,姜浩,陈水森,等.基于时空滤波Sentinel-1时序数据的田块尺度岭南作物分布提取[J].农业工程学报, 2022,(5):158-166.) [8] ZHANG X, ZHOU Y N, LUO J. Deep learning for processing and analysis of remote sensing big data:A technical review[J]. Big Earth Data, 2021:1-34.
[9] CAI Y, GUAN K, PENG J, et al. A high-performance and in-season classification system of field-level crop types using timeseries Landsat data and a machine learning approach[J]. Remote sensing of environment, 2018, 210:35-47.
[10] GARIOUD A, VALERO S, GIORDANO S, et al. Recurrent-based regression of Sentinel time series for continuous vegetation monitoring[J]. Remote Sensing of Environment, 2021, 263:112419.
[11] ZHOU Y N, WANG S, WU T, et al. For-backward LSTM-based missing data reconstruction for time-series Landsat images[J]. GIScience&Remote Sensing, 2022, 59(1):410-30.
[12] WANG S, ZHOU Y N, YANG X, et al. BSNet:Boundary-semantic-fusion network for farmland parcel mapping in highresolution satellite images[J]. Computers and Electronics in Agriculture, 2023, 206:107683.
[13] ZHOU Y N, LUO J, FENG L, et al. DCN-based spatial features for improving parcel-based crop classification using highresolution optical images and multi-temporal SAR data[J]. Remote Sensing, 2019, 11(13):1619.
[14] ZHOU Y, LI J, FENG L, et al. Adaptive Scale Selection for Multiscale Segmentation of Satellite Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8):3641-51.
[15] LI Qianjing, LIU Jun, MI Xiaofei, et al. Object-oriented crop classification for GF-6 WFV remote sensing images based on Convolutional Neural Network[J]. National Remote Sensing Bulletin. 2021, 25(2):549-558.(李前景,刘珺,米晓飞,等.面向对象与卷积神经网络模型的GF-6 WFV影像作物分类[J].遥感学报, 2021, 25(2):549-558.) [16] LUO Jiancheng, WU Tianjun, WU Zhifeng, et al. Methods of Intelligent Computation and Pattern Mining based on Geoparcels[J].Journal of Geo-information Science, 2020, 22(1):57-75.(骆剑承,吴田军,吴志峰,等.地理图斑智能计算及模式挖掘方法研究[J].地球信息科学学报, 2020, 22(1):57-75.) [17] XU L, MING D, ZHOU W, et al. Farmland extraction from high spatial resolution remote sensing images based on stratified scale pre-estimation[J]. Remote Sensing, 2019, 11(2):108.
[18] GONG Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1788-1796.(龚健雅.人工智能时代测绘遥感技术的发展机遇与挑战[J].武汉大学学报(信息科学版), 2018, 43(12):1788-1796.) [19] LUO Jiancheng, WU Tianjun, XIA Liegang. The Theory and Calculation of Spatial-spectral Cognition of Remote Sensing[J]. Journal of Geo-information Science, 2016, 18(5):578-589.(骆剑承,吴田军,夏列钢.遥感图谱认知理论与计算[J].地球信息科学学报, 2016, 18(5):578-589.) [20] ZHANG Bing. Remotely Sensed Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1861-1871.(张兵.遥感大数据时代与智能信息提取[J].武汉大学学报(信息科学版), 2018, 43(12):1861-1871.) [21] YANG L, HUANG R, HUANG J, et al. Semantic segmentation based on temporal features:Learning of temporal-spatial information from time-series SAR images for paddy rice mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-16.
[22] WEI P, CHAI D, LIN T, et al. Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model[J]. ISPRS journal of photogrammetry and remote sensing, 2021, 174:198-214.
[23] HAN Yanxin, MENG Jihua. A review of per-field crop classification using remote sensing[J]. Remote Sensing for Land&Resources, 2019, 31(2):1-9.(韩衍欣,蒙继华.面向地块的农作物遥感分类研究进展[J].自然资源遥感, 2019, 31(2):1-9.) [24] YANG Yingpin, WU Zhifeng, LUO Jiancheng, et al. Parcel-based crop distribution extraction using the spatiotemporal collaboration of remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(7):166-174.(杨颖频,吴志峰,骆剑承,等.时空协同的地块尺度作物分布遥感提取[J].农业工程学报, 2021, 37(7):166-174.) [25] SUN Y, LI Z-L, LUO J, et al. Farmland parcel-based crop classification in cloudy/rainy mountains using Sentinel-1 and Sentinel-2 based deep learning[J]. International Journal of Remote Sensing, 2022, 43(3):1054-73.
[26] ZHANG Qiankun, MENG Jihua, REN Chao. Crop classification based on two-dimensional representation and CNN model from remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(7):1437-1449.(张乾坤,蒙继华,任超.构建地块二维表征及CNN模型的作物遥感分类[J].遥感学报, 2022, 26(7):1437-1449.) [27] RUßWURM M, PELLETIER C, ZOLLNER M, et al. Breizhcrops:A time series dataset for crop type mapping. ISPRS[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43:B2-2020.
[28] SONG C, WOODCOCK C E, SETO K C, et al. Classification and change detection using Landsat TM data:when and how to correct atmospheric effects?[J]. Remote sensing of Environment, 2001, 75(2):230-44.
[29] QIU Z, YAO T, MEI T. Learning spatio-temporal representation with pseudo-3d residual networks; proceedings of the proceedings of the IEEE International Conference on Computer Vision, F, 2017[C].
[30] HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet?; proceedings of the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, F, 2018[C].
[31] DAI F, LIU H, MA Y, et al. Dense scale network for crowd counting; proceedings of the Proceedings of the 2021 international conference on multimedia retrieval, F, 2021[C].
[32] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:180301271, 2018.
[33] LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection; proceedings of the Proceedings of the IEEE international conference on computer vision, F, 2017[C].
计量
- 文章访问数: 506
- HTML全文浏览量: 70
- PDF下载量: 90