Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations
-
摘要: 青藏高原是一个理想而独特的地球科学天然实验场,青藏高原的地壳形变、物质逃逸模式及地震活动性等科学问题一直是地学界关注的重点。以全球导航卫星系统(global navigation satellite system,GNSS)和合成孔径雷达干涉测量技术(interferometric synthetic aperture radar,InSAR)为代表的空间大地测量技术因其时空分辨率高、覆盖范围广、观测精度高等特点,被应用于现今的地壳形变监测并在地震研究中起着十分重要的作用。首先,综述了青藏高原三维地壳形变研究进展情况,包括青藏高原地壳水平形变的GNSS研究、综合利用GNSS和水准观测资料的青藏高原地壳垂直形变研究、青藏高原InSAR区域形变研究和融合多源大地测量资料构建青藏高原三维形变场等。其次,结合青藏高原三维地壳形变资料介绍了青藏高原活动断裂地震危险性评估的研究进展,讨论了顾及地震应力扰动的概率性地震危险性评估过程以及大地测量观测在地震危险性评估中所起的作用。今后需要加强青藏高原GNSS监测空区的加密观测工作,综合GNSS和InSAR观测结果精化青藏高原的地壳运动与变形模式;开展断裂带“近全地震周期”的大地测量观测研究,分析断裂带“近全地震周期”的形变特征及断层在地震周期内的形变演化过程;利用地震学、地质学、大地测量学等多源海量数据开展基于机器学习的活动断层地震危险性评估。
-
关键词:
- 青藏高原 /
- 三维地壳形变 /
- GNSS/InSAR /
- 近全地震周期 /
- 地震危险性评估
Abstract: The Tibetan Plateau is an ideal and unique natural experimental field for geoscience research. Scientific issues related to crustal deformation, material escape pattern, and seismic activity of the Tibetan Plateau attract long-term attention from the geologists. Spatial geodetic techniques represented by global navigation satellite system (GNSS) and interferometric synthetic aperture radar (InSAR), with their high spatiotemporal resolution, widely coverage, and high observation accuracy, have been applied to current crustal deformation measurements and play an essential role in seismological research. First, we review the research progress on three-dimensional crustal deformation in the Tibetan Plateau, including researches related to horizontal crustal deformation using GNSS, vertical crustal deformation study using a combination of GNSS and leveling, regional deformation measurements using InSAR, and the construction of a three-dimensional deformation field using multiple geodetic data. Second, in conjunction with three-dimensional crustal deformation, we review the research progress on seismic risk assessment of active faults in the Tibetan Plateau, and discuss the probabilistic seismic risk assessment that considers earthquake stress perturbations. The role of geodetic measurements in seismic risk assessment is also discussed. In the future, more attention should be paid to the following three aspects. First, dense GNSS network should be established in observation gaps to refine the crustal motion and deformation pattern of the Tibetan Plateau. Second, geodetic observations during “quasi-complete seismic cycle” should be conducted to analyze the deformation characteristics and evolution process of fault zones.Third, seismic risk assessment based on machine learning should be developed using multisource data from seismology, geology, and geodetic observations. -
-
图 4 历史地震产生的库仑应力变化可能影响后续地震的发生[45]
Figure 4. Coulomb Stress Change Caused by Historical Earthquakes Could Affect the Occurrence of Subsequent Earthquakes
-
[1] Avouac J P, Meng L S, Wei S J, et al. Lower Edge of Locked Main Himalayan Thrust Unzipped by the 2015 Gorkha Earthquake[J]. Nature Geoscience, 2015, 8(9): 708-711. doi: 10.1038/ngeo2518
[2] Zhang P Z, Shen Z K, Wang M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32(9): 809-812. doi: 10.1130/G20554.1
[3] Teng J, Wei S, Sun K, et al. Relative Motion Across the Eastern Tibetan Plateau: Contributions from Faulting, Internal Strain and Rotation Rates[J]. Tectonophysics, 2013, 584: 240-256. doi: 10.1016/j.tecto.2012.08.006
[4] Tapponnier P, Xu Zhiqin,Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science. 2001, 294(5547):1671-1677. doi: 10.1126/science.105978
[5] Houseman G, England P. Finite Strain Calculations of Continental Deformation: 1. Method and General Results for Convergent Zones[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3651-3663. doi: 10.1029/JB091iB03p03651
[6] Teng J, Wei S, Sun K, et al. The Characteristics of the Seismic Activity in the Qinghai-Xizang (Tibet) Plateau of China[J]. Tectonophysics, 1987, 134(1/2/3): 129-144.
[7] Avouac J, Tapponnier P. Kinematic Model of Active Deformation in Central Asia[J]. Geophysical Research Letters, 1993, 20: 895-898. doi: 10.1029/93GL00128
[8] Royden L H, Burchfiel B C, King R W, et al. Surface Deformation and Lower Crustal Flow in Eastern Tibet[J]. Science, 1997, 276(5313): 788-790. doi: 10.1126/science.276.5313.788
[9] Gao Y,Wu Z,Liu Z,et al. Seismic Source Characteristics of Nine Strong Earthquakes from 1988 to 1990 and Earthquake Activity Since 1970 in the Sichuan-Qinghai-Xizang (Tibet) Zone of China[J]. Pure and Applied Geophysics, 2000, 157(9): 1423-1443. doi: 10.1007/PL00001127
[10] Wu C, Tian X, Xu T, et al. Deformation of Crust and Upper Mantle in Central Tibet Caused by the Northward Subduction and Slab Tearing of the Indian Lithosphere: New Evidence Based on Shear Wave Splitting Measurements[J]. Earth and Planetary Science Letters, 2019, 514: 75-83. doi: 10.1016/j.epsl.2019.02.037
[11] Wang M, Shen Z K. Present‐Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research:Solid Earth,2020,125(2): e2019JB018774.
[12] Wu Y, Zheng Z, Nie J, et al. High-Precision Vertical Movement and Three-Dimensional Deformation Pattern of the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth,2022,127:e2021JB023202.
[13] Lai X A,Wu X H,Seeber G, et al. The First Epoch Western Yunnan GPS Survey: Data Reduction and Analysis with Geonap Software[J]. Earthq Res China, 1992, 6(1) : 68-90.
[14] Wang Q,Zhang P Z,Freymueller J T,et al. Present-day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5542): 574-577. doi: 10.1126/science.1063647
[15] 江在森, 马宗晋, 张希, 等. GPS初步结果揭示的中国大陆水平应变场与构造变形[J]. 地球物理学报, 2003, 46(3): 352-358. doi: 10.3321/j.issn:0001-5733.2003.03.012 Jiang Zaisen, Ma Zongjin, Zhang Xi, et al. Horizontal Strain Field and Tectonic Deformation of Chinese Mainland Revealed by Preliminary GPS Result[J]. Chinese Journal of Geophysics, 2003, 46(3): 352-358. doi: 10.3321/j.issn:0001-5733.2003.03.012
[16] 牛之俊, 王敏, 孙汉荣, 等. 中国大陆现今地壳运动速度场的最新观测结果[J]. 科学通报, 2005, 50(8): 839-840. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200508019.htm Niu Zhijun, Wang Min, Sun Hanrong, et al. The Latest Observation Results of Current Crustal Movement Velocity Field in Chinese Mainland[J]. Chinese Science Bulletin, 2005, 50(8): 839-840. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200508019.htm
[17] Gan W, Zhang P, Shen Z K, et al. Present-Day Crustal Motion Within the Tibetan Plateau Inferred from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112: B08416.
[18] Wang W, Qiao X J, Yang S M, et al. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements[J]. Geophysical Journal International, 2017, 208(2): 1088-1102. doi: 10.1093/gji/ggw445
[19] Zheng G, Wang H, Wright T J, et al. Crustal Deformation in the India‐Eurasia Collision Zone from 25 Years of GPS Measurements[J]. Journal of Geophysical Research Solid Earth (JGR), 2017, 122(11): 9290-9312. doi: 10.1002/2017JB014465
[20] Zhao Q, Chen Q, van Dam T V, et al. The Vertical Velocity Field of the Tibetan Plateau and Its Surrounding Areas Derived from GPS and Surface Mass Loading Models[J]. Earth and Planetary Science Letters, 2023, 609: 118107. doi: 10.1016/j.epsl.2023.118107
[21] 刘经南, 姚宜斌, 施闯, 等. 中国大陆现今垂直形变特征的初步探讨[J]. 大地测量与地球动力学, 2002, 22(3): 1-5. doi: 10.3969/j.issn.1671-5942.2002.03.001 Liu Jingnan, Yao Yibin, Shi Chuang, et al. Preliminary Research on Characteristic of Present-Day Vertical Deformation of Chinese Mainland[J]. Crustal Deformation and Earthquake, 2002, 22(3): 1-5. doi: 10.3969/j.issn.1671-5942.2002.03.001
[22] Gan W. 3D Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth , 2013,118(10): 5722-5732. doi: 10.1002/2013JB010503
[23] Pan Y,Shen W B,Shum C, et al. Spatially Varying Surface Seasonal Oscillations and 3-D Crustal Deformation of the Tibetan Plateau Derived from GPS and GRACE Data[J]. Earth and Planetary Science Letters, 2018, 502: 12-22. doi: 10.1016/j.epsl.2018.08.037
[24] Hao M,Wang Q L, Shen Z K,et al. Present Day Crustal Vertical Movement Inferred from Precise Leveling Data in Eastern Margin of Tibetan Plateau[J]. Tectonophysics, 2014, 632: 281-292. doi: 10.1016/j.tecto.2014.06.016
[25] 郭鑫伟, 郭春喜, 聂建亮, 等. 一等水准成果构建的中国大陆垂直运动模型研究[J]. 武汉大学学报(信息科学版), 2022, 47(3): 361-368. doi: 10.13203/j.whugis20190389 Guo Xinwei, Guo Chunxi, Nie Jianliang, et al. Vertical Movement Model in Chinese Mainland Based on First Order Leveling Results[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 361-368. doi: 10.13203/j.whugis20190389
[26] 甘卫军, 程朋根, 周德敏, 等. 青藏高原东北缘主要活动断裂带GPS加密观测及结果分析[J]. 地震地质, 2005, 27(2): 177-187. doi: 10.3969/j.issn.0253-4967.2005.02.001 Gan Weijun,Cheng Penggen,Zhou Demin,et al. Observation of a GPS Profile Across Main Faults on Northeast Margin of Tibetan Plateau and Data Analysis[J]. Seismology and Geology, 2005, 27(2): 177-187. doi: 10.3969/j.issn.0253-4967.2005.02.001
[27] 屈春燕, 单新建, 宋小刚, 等. 基于PSInSAR技术的海原断裂带地壳形变初步研究[J]. 地球物理学报, 2011, 54(4): 984-993. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104015.htm Qu Chunyan, Shan Xinjian, Song Xiaogang, et al. The PSInSAR Technique and Its Application to the Study on Crustal Deformation of the Haiyuan Fault Zone[J]. Chinese Journal of Geophysics, 2011, 54(4): 984-993. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104015.htm
[28] Wright T, Parsons B, England P, et al. InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet[J]. Science,2004,305(5681): 236-239. doi: 10.1126/science.1096388
[29] Taylor M, Peltzer G. Current Slip Rates on Conjugate Strike‐Slip Faults in Central Tibet Using Synthetic Aperture Radar Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2006, 111:B12402.
[30] Jolivet R, Cattin R, Chamot-Rooke N, et al. Thin-plate Modeling of Interseismic Deformation and Asymmetry Across the Altyn Tagh Fault Zone[J]. Geophysical Research Letters, 2008, 35: L02309.
[31] Wang H, Wright T, Biggs J. Interseismic Slip Rate of the Northwestern Xianshuihe Fault from InSAR Data[J]. Geophysical Research Letters, 2009, 36, L03302.
[32] Wen Y, Li Z, Xu C, et al. Postseismic Motion After the 2001 Mw 7. 8 Kokoxili Earthquake in Tibet Observed by InSAR Time Series[J]. Journal of Geophysical Research: Solid Earth, 2012,117(B8): B08405.
[33] Jolivet R, Candela T, Lasserre C, et al. The Burst-Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China Short Note[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 480-488. doi: 10.1785/0120140237
[34] Jolivet R, Lasserre C, Doin M P, et al. Spatio-Temporal Evolution of Aseismic Slip Along the Haiyuan Fault, China: Implications for Fault Frictional Properties[J]. Earth and Planetary Science Letters, 2013, 377/378: 23-33. doi: 10.1016/j.epsl.2013.07.020
[35] Xu C J, Zhu S. Temporal and Spatial Movement Characteristics of the Altyn Tagh Fault Inferred from 21 Years of InSAR Observations[J]. Journal of Geodesy, 2019, 93(8): 1147-1160. doi: 10.1007/s00190-019-01232-2
[36] Huang Z, Zhou Y, Qiao X, et al. Kinematics of the 1 000 km Haiyuan Fault System in Northeastern Tibet from High-Resolution Sentinel-1 InSAR Velocities: Fault Architecture, Slip Rates, and Partitioning[J]. Earth and Planetary Science Letters, 2022, 583: 117450. doi: 10.1016/j.epsl.2022.117450
[37] Qiao Xin. Along-Strike Variation in Fault Structural Maturity and Seismic Moment Deficits on the Yushu-Ganzi-Xianshuihe Fault System Revealed by Strain Accumulation and Regional Seismicity[J]. Earth and Planetary Science Letters, 2022, 596: 117799. doi: 10.1016/j.epsl.2022.117799
[38] Wang H, Wright T. Satellite Geodetic Imaging Reveals Internal Deformation of Western Tibet[J]. Geophysical Research Letters, 2012, 39: L07303.
[39] Wang H, Wright T J, Liu-Zeng J , et al. Strain Rate Distribution in South‐Central Tibet from Two Decades of InSAR and GPS[J]. Geophysical Research Letters, 2019, 46(10): 5170-5179. doi: 10.1029/2019GL081916
[40] Zhu L, Ji L, Liu C. Interseismic Slip Rate and Locking Along the Maqin-Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, Based on Sentinel-1 Images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703. doi: 10.1016/j.jseaes.2021.104703
[41] Zhao D, Qu C, Burgmann R, et al. Large-Scale Crustal Deformation, Slip-Rate Variation, and Strain Distribution Along the Kunlun Fault (Tibet) from Sentinel-1 InSAR Observations (2015—2020)[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022892.
[42] 中国地震局. 中国地震活动断层探测技术系统技术规程[M]. 北京: 地震出版社, 2005. China Earthquake Adminstration. Stipulation on Technical System for China Earthquake Active Fault Surveying[M]. Beijing: Seismological Press, 2005.
[43] 张永庆, 谢富仁. 活动断裂地震危险性的研究现状和展望[J]. 震灾防御技术, 2007, 2(1): 64-74. doi: 10.3969/j.issn.1673-5722.2007.01.009 Zhang Yongqing, Xie Furen. Progress and Prospect on the Seismic Hazard Assessment of Active Faults[J]. Technology for Earthquake Disaster Prevention, 2007, 2(1): 64-74. doi: 10.3969/j.issn.1673-5722.2007.01.009
[44] Cornell C A. Engineering Seismic Risk Analysis[J]. Bulletin of the Seismological Society of America,1968, 58: 1583-1606. doi: 10.1785/BSSA0580051583
[45] 江国焰. 利用库仑破裂准则评估活动断层地震危险性[D]. 武汉: 武汉大学, 2013. Jiang Guoyan. Evaluation of Seismic Risk of Active Faults by Coulomb Fracture Criterion[D]. Wuhan: Wuhan University, 2013.
[46] Stein R S, Barka A A, Dieterich J H. Progressive Failure on the North Anatolian Fault Since 1939 by Earthquake Stress Triggering[J]. Geophysical Journal International, 1997, 128(3): 594-604. doi: 10.1111/j.1365-246X.1997.tb05321.x
[47] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001 Xu Xiwei, Wu Xiyan, Yu Guihua, et al. Seismo-Geological Signatures for Identifying M≥7. 0 Earthquake Risk Areas and Their Premilimary Application in the Mainland of China[J]. Seismology and Geology, 2017, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001
[48] 吕悦军, 谢桌娟, 彭艳菊, 等. 中国及邻近地区中小地震震中分布图[M]. 北京:地震出版社,2016. Lü Yuejun, Xie Zhuojuan, Peng Yanju, et al. Map of Epicenter Distribution of Moderate and Small Earthquakes in China and Its Adjacent Areas [M]. Beijing: Seismological Press, 2016.
[49] 郑丹. 利用P波接收函数和瑞利面波联合反演青藏高原东北缘S波速度结构[D]. 北京: 中国地质大学, 2015. Zheng Dan. Inversion of S-wave Velocity Structure in Northeastern Margin of Qinghai-Tibet Plateau by P-wave Receiving Function and Rayleigh Surface Wave[D]. Beijing: China University of Geosciences, 2015.
[50] Bao X, Song X D, Eaton D, et al. Episodic Lithospheric Deformation in Eastern Tibet Inferred from Seismic Anisotropy[J]. Geophysical Research Letters, 2020, 47: e2019GL085721.
[51] Jiang C X, Yang Y J, Zheng Y. Penetration of Mid-crustal Low Velocity Zone Across the Kunlun Fault in the NE Tibetan Plateau Revealed by Ambient Noise Tomography[J]. Earth and Planetary Science Letters, 2014, 406: 81-92. doi: 10.1016/j.epsl.2014.08.040
[52] 王琪, 乔学军, 游新兆. 中国地震大地测量: 半个世纪的历程与科学贡献[J]. 中国地震, 2020, 36(4): 647-659. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202004002.htm Wang Qi, Qiao Xuejun, You Xinzhao. Earthquake Geodesy in China‐Endeavor and Scientific Contribution in a Half Century[J]. Earthquake Research in China, 2020, 36(4): 647-659. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202004002.htm
[53] Jiang G Y,Xu X W,Chen G H,et al. Geodetic Imaging of Potential Seismogenic Asperities on the Xianshuihe‐Anninghe‐Zemuhe Fault System, Southwest China, with a New 3D Viscoelastic Interseismic Coupling Model[J]. Journal of Geophysical Research Solid Earth, 2015, DOI: 10.1002/2014JB011492.
[54] Jolivet R, Lasserre C, Doin M P, et al. Shallow Creep on the Haiyuan Fault (Gansu, China) Revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2012, DOI: 10.1029/2011JB008732.
[55] 赵静, 武艳强, 江在森, 等. 芦山地震前龙门山断裂带闭锁程度与变形动态特征研究[J]. 地震学报, 2013, 35(5): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201305007.htm Zhao Jing, Wu Yanqiang, Jiang Zaisen, et al. Fault Locking and Dynamic Deformation of the Longmenshan Fault Zone Before the 2013 Lushan Ms 7. 0 Earthquake[J]. Acta Seismologica Sinica, 2013, 35(5): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201305007.htm
[56] 赵静, 江在森, 武艳强, 等. 汶川地震前龙门山断裂带闭锁程度和滑动亏损分布研究[J]. 地球物理学报,2012,55(9): 2963-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201209016.htm Zhao Jing, Jiang Zaisen, Wu Yanqiang, et al. Study on Fault Locking and Fault Slip Deficit of the Longmenshan Fault Zone Before the Wenchuan Earthquake[J]. Chinese Journal of Geophysics, 2012, 55(9): 2963-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201209016.htm
[57] Reid H F. The Meachanism of the Earthquake, in the California Earthquake of April 18, 1906[R]. Washington D C: Carnegie Institution, 1910.
[58] Schwartz D P, Coppersmith K. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones[J]. Journal of Geophysical Research, 1984, 89: 5681-5698. doi: 10.1029/JB089iB07p05681
[59] Shimazaki K, Nakata T. Time‐Predictable Recurrence Model for Large Earthquakes[J]. Geophysical Research Letters, 1980, 7(4):279-282. doi: 10.1029/GL007i004p00279
[60] Papazachos B C. A Time- and Magnitude-Predictable Model for Generation of Shallow Earthquakes in the Aegean Area[J]. Pure and Applied Geophysics, 1992, 138(2): 287-308.
[61] Working Group on California Earthquake Probabilities. Earthquake Probabilities in the San Francisco Bay Region, 2000—2030[R]. California: US Geological Survey, 1999.
[62] 冉洪流, 周本刚. 布朗模型在北京西北地区的应用[J]. 地震学报, 2004, 26(S1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB2004S1011.htm Ran Hongliu,Zhou Bengang. Application of Brownian Model in the Northwestern Beijing, China[J]. Acta Seismologica Sinica, 2004, 26(S1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB2004S1011.htm
[63] 程佳, 徐锡伟, 陈桂华. 基于特大地震发生率的川滇地区地震危险性预测新模型[J]. 地球物理学报,2020,63(3):1170-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003034.htm Cheng Jia, Xu Xiwei, Chen Guihua. A New Prediction Model of Seismic Hazard for the Sichuan-Yunnan Region Based on the Occurrence Rate of Large Earthquakes[J]. Chinese Journal of Geophysics, 2020, 63(3): 1170-1182. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003034.htm
[64] 闻学泽, 张培震. 地震的原地复发模式理论及其有关问题[M]//国家地震局地质研究所. 活动断裂研究(5). 北京:地震出版社,1996: 1-11. Wen Xueze, Zhang Peizhen. Earthquake Recurrence Models and Associated Problems [M]//Institute of Geology, State Seismological Bureau. Research of Active Fault (5). Beijing: Seismological Press, 1996: 1-11.
[65] Nishenko S, Buland R. A Generic Recurrence Interval Distribution for Earthquake Forecasting[J]. Bulletin of the Seismological Society of America, 1987, 77(4):1382-1399.
[66] Ellsworth W, Matthews M, Nadeau R, et al. A Physically-Based Earthquake Recurrence Model for Estimation of Long-Term Earthquake Probabilities[C]//Workshop on Earthquake: State of the Art and Directions for the Future,Rome,Italy,1999.
[67] Ward S. A Multidisciplinary Approach to Seismic Hazard in Southern California[J]. Bulletin of the Seismological Society of America, 1994, 84:1293–1309.
[68] Smith B, Sandwell D. Coulomb Stress Accumulation Along the San Andreas Fault System[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6):2296.
[69] 李乐, 陈棋福, 钮凤林, 等. 鲜水河断裂带南段深部变形的重复地震研究[J]. 地球物理学报,2015, 58(11): 4138-4148. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511022.htm Li Le,Chen Qifu,Niu Fenglin,et al. Quantitative Study of the Deep Deformation Along the Southern Segment of the Xianshuihe Fault Zone Using Repeating Microearthquakes[J]. Chinese Journal of Geophysics, 2015, 58(11): 4138-4148. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511022.htm
[70] 李乐, 陈棋福, 钮凤林, 等. 基于重复微震的小江断裂带深部滑动速率研究[J]. 地球物理学报, 2013, 56(10): 3373-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201310013.htm Li Le, Chen Qifu, Niu Fenglin, et al. Estimates of Deep Slip Rate Along the Xiaojiang Fault with Repeating Microearthquake Data[J]. Chinese Journal of Geophysics, 2013, 56(10): 3373-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201310013.htm
[71] Wang S, Jiang G, Lei X, et al. Three Mw≥4. 7 Earthquakes Within the Changning (China) Shale Gas Field Ruptured Shallow Faults Intersecting with Hydraulic Fracturing Wells[J]. Journal of Geophysical Research: Solid Earth, 2022, 127:e2021JB022946.
[72] Luo H, Wang T, Wei S. Systematic Comparison of InSAR and Seismic Source Models for Moderate‐Size Earthquakes in Western China: Implication to the Seismogenic Capacity of the Shallow Crust[J]. Journal of Geophysical Research: Solid Earth, 2022, 127:e2022JB024794.
[73] Wang Q, Qiao X J, Lan Q G, et al. Rupture of Deep Faults in the 2008 Wenchuan Earthquake and Uplift of the Longmen Shan[J]. Nature Geoscience, 2011, 4(9): 634-640.
[74] Xiong Wei. Coseismic Slip and Early Afterslip of the 2021 Mw 7. 4 Maduo,China Earthquake Constrained by GPS and InSAR Data[J]. Tectonophysics, 2022, 840: 229558.
[75] Li Y C,Nocquet J,Shan X, et al. Heterogeneous Interseismic Coupling Along the Xianshuihe‐Xiaojiang Fault System, Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126:e2020JB021187.
[76] Hardebeck J. Stress Triggering and Earthquake Probability Estimates[J]. Journal of Geophysical Research, 2004, 109:B04310.
[77] Parsons T. Significance of Stress Transfer in Time-Dependent Earthquake Probability Calculations[J]. Journal of Geophysical Research,2005,110:B05S02.
[78] Parsons T, Ogata Y, Zhuang J C, et al. Evaluation of Static Stress Change Forecasting with Prospective and Blind Tests[J]. Geophysical Journal International, 2012, 188(3): 1425-1440.
[79] Stein R S. Earthquake Conversations[J]. Scientific American, 2003, 288(1): 72-79.
[80] Martínez-Díaz J J, Capote R, Tsigé M, et al. Seismic Triggering in a Stable Continental Area: The Lugo 1995—1997 Seismic Sequences (NW Spain) [J]. Journal of Geodynamic, 2006, 41:440-449.
[81] Xiong X, Shan B, Zheng Y, et al. Stress Transfer and Its Implication for Earthquake Hazard on the Kunlun Fault,Tibet[J]. Tectonophysics, 2010, 482:216-225.
[82] Jia K, Zhou S,Zhuang J,et al. Did the 2008 Mw 7. 9 Wenchuan Earthquake Trigger the Occurrence of the 2017 Mw 6. 5 Jiuzhaigou Earthquake in Sichuan, China?[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 2965-2983.
[83] Wang Jianjun. Probing Coulomb Stress Triggering Effects for a Mw > 6. 0 Earthquake Sequence from 1997 to 2014 Along the Periphery of the Bayan Har Block on the Tibetan Plateau[J]. Tectonophysics, 2017, 694: 249-267.
[84] Nalbant S, McCloskey J. Stress Evolution Before and After the 2008 Wenchuan, China Earthquake[J]. Earth and Planetary Science Letters, 2011, 307(1/2): 222-232.
[85] Parsons T, Ji C, Kirby E. Stress Changes from the 2008 Wenchuan Earthquake and Increased Hazard in the Sichuan Basin[J]. Nature,2008,454(7203): 509-510.
[86] Xiong W, Chen W, Zhao B, et al. Insight into the 2016 Menyuan Mw 5. 9 Earthquake with InSAR: A Blind Reverse Event Promoted by Historical Earthquakes[J]. Pure and Applied Geophysics, 2019, 176(2): 577-591.
[87] Shan B, Xiong X, Wang R J, et al. Coulomb Stress Evolution Along Xianshuihe-Xiaojiang Fault System Since 1713 and Its Interaction with Wenchuan Earthquake, May 12, 2008[J]. Earth and Planetary Science Letters, 2013, 377:199-210.
[88] 朱俊清, 孙珂. 基于多源数据的机器学习在地震预测中的研究进展[J]. 中国地震, 2022, 38(4): 691-707. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202204008.htm Zhu Junqing, Sun Ke. Research Progress of Machine Learning Based on Multi-source Data in Earthquake Prediction[J]. Earthquake Research in China, 2022, 38(4): 691-707. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202204008.htm
[89] Asencio-Cortés G, Martínez-Álvarez F, Troncoso A, et al. Medium-Large Earthquake Magnitude Prediction in Tokyo with Artificial Neural Networks[J]. Neural Computing and Applications, 2017, 28(5): 1043-1055.
[90] Asencio-Cortes G, Morales-Esteban A, Shang X, et al. Earthquake Prediction in California Using Regression Algorithms and Cloud-Based Big Data Infrastructure[J]. Computers and Geosciences, 2018, 115: 198-210.