地月空间探测器星间链路定轨能力分析

曹建峰, 满海钧, 王文彬, 王俊魁, 刘山洪, 鞠冰, 张宇

曹建峰, 满海钧, 王文彬, 王俊魁, 刘山洪, 鞠冰, 张宇. 地月空间探测器星间链路定轨能力分析[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230007
引用本文: 曹建峰, 满海钧, 王文彬, 王俊魁, 刘山洪, 鞠冰, 张宇. 地月空间探测器星间链路定轨能力分析[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20230007
CAO Jianfeng, MAN Haijun, WANG Wenbin, WANG Junkui, LIU Shanhong, JU Bing, ZHANG Yu. A Simulation Study of Orbit Determination Capability for Cislunar Space Probes Using ISL Data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230007
Citation: CAO Jianfeng, MAN Haijun, WANG Wenbin, WANG Junkui, LIU Shanhong, JU Bing, ZHANG Yu. A Simulation Study of Orbit Determination Capability for Cislunar Space Probes Using ISL Data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230007

地月空间探测器星间链路定轨能力分析

基金项目: 

国家自然科学基金( 11973015); 中国科学院战略性先导科技专项资助( XDA30010300)

详细信息
    作者简介:

    曹建峰,副研究员,主要从事航天器精密定轨及其科学应用研究。E-mail:jfcao@foxmail.com

  • 中图分类号: V412.4+1

A Simulation Study of Orbit Determination Capability for Cislunar Space Probes Using ISL Data

  • 摘要: 针对地月空间星间链路的应用需求,建立了双向单程测量的观测模型,在广义相对论参考框架下实现了求和组合算法。以即将实施的地月空间DRO探索任务为背景,开展利用星间链路测量的多探测器联合定轨能力分析。结果表明,星间链路测量具备独立支持轨道计算的能力,在仅有DRO卫星与RO卫星星间链路时,需要10天以上弧段可以获取优于百米的绝对轨道精度,LEO卫星的加入使得观测弧段缩短至5天;如果融合使用LEO卫星自定位数据,观测弧段可进一步缩短至1天。分析还表明,星间链路测量系统差的解算是制约定轨收敛的重要因素,因此在预处理阶段有必要完成设备延迟、钟差、传播介质等引入的系统性误差的标校。
    Abstract: Objectives To analyze the orbit determination capability of spacecraft in Cislunar Space using intersatellite Measurements. Methods According to the application requirements of Cislunar Space inter satellite link, the observation model of Dual-One-Way Measurement is established, and the algorithm for the sum combination is implemented in the realm of the General Relativity. The upcoming Cislunar DRO Exploration (CDROE) mission will utilize inter-satellites radiometric link among a LEO satellite, a DRO satellite and a RO satellite. The joint orbit determination capability using inter satellite link measurement is analyzed. Results The results show that more than 10 days of tracking data is needed to obtain an orbit better than 100m using only ISL between DRO and RO, and additional ISL data with LEO can shorten the tracking arc to 5 days. If the positioning data of LEO can be utilized, only 1-day data is needed. Conclusions The solution of systematic error is an important factor restricting the orbit determination convergence, so the calibration of systematic errors introduced by equipment delay, clock error, propagation medium, etc. is necessary.
  • [1] BAO Weimin, WANG Xiaowei. Some thoughts about cislunar exploration and exploitation[J]. Journal of Astronautics, 2021, 43(6):705-712(包为民,汪小卫.地月空间探索与开发的思考[J].宇航学报, 2021, 43(6):705-712)
    [2] CHEN Ming, TANG Geshi, CAO Jianfeng, et al. Precision orbit determination of CE-1 lunar satellite[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2):212-217(陈明,唐歌实,曹建峰,等.嫦娥一号绕月探测卫星精密定轨实现[J].武汉大学学报(信息科学版), 2011, 36(2):212-217)
    [3] CHEN Ming, ZHANG Yu, CAO Jianfeng, et al. Orbit determination and tracking technology of CE-2 satellite[J]. Chinese Science Bulletin, 2012, 57(9):689-696(陈明,张宇,曹建峰,等.嫦娥二号卫星轨道确定与测轨技术[J].科学通报, 2012, 57(9):689-696)
    [4] HUANG Yong, CHANG Shengqi, LI Peijia, et al. Orbit determination of Chang'E-3 and positioning of the lander and the rover[J]. Chin SCI Bull, 2014, 59(23):3858-3867(黄勇,昌胜骐,李培佳,等."嫦娥三号"月球探测器的轨道确定和月面定位[J].科学通报, 2014, 59(23):3858-3867)
    [5] ZHANG Yu, CAO Jianfeng, DUAN Jianfeng, et al. Orbit dynamics model compensation and implementation for continuous attitude control of Chang'E-3 probe[J]. Journal of Astronautics, 2015, 36(5):489-495(张宇,曹建峰,段建锋,等.嫦娥三号探测器连续姿控的轨道动力学模型补偿及实现[J].宇航学报, 2015, 36(5):489-495)
    [6]

    ANANDA M P, BERNSTEIN H, CUNNINGHAM K E, et al. Global positioning system (GPS) autonomous navigation[C]//IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, 1990:497-508.

    [7]

    CODIK A. AUTONOMOUS NAVIGATION OF GPS SATELLITES:A CHALLENGE FOR THE FUTURE[J]. Annual of Navigation, 1985, 32:221-232.

    [8]

    RAJAN J A. Highlights of GPS II-R autonomous navigation[C]//Proceedings of the 58th Annual Meeting of The Institute of Navigation and CIGTF 21st Guidance Test Symposium. USA, 2022-06-24, 2002:354-363.

    [9] MAO Yue, SONG Xiaoyong, JIA Xiaolin, et al. Naturalisation method research on Inter-Satellite Link observation data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1201-1206(毛悦,宋小勇,贾小林,等.星间链路观测数据归化方法研究[J].武汉大学学报(信息科学版), 2013, 38(10):1201-1206)
    [10]

    TANG C, HU X, ZHOU S, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite Link measurements[J]. Journal of Geodesy, 2018, 92(10):1116-1155.

    [11] 蔡洪亮,孟轶男,耿涛,等.北斗三号卫星星地星间联合精密定轨初步结果[J].武汉大学学报(信息科学版), 2020, 45(10):1493-1500.[Cai Hong-liang, Meng Yi-nan, Geng Tao, et al. Initial results of precise orbit determination using Satellite-Ground and Inter-Satellite Link observations for BDS-3 satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1493-1500.]
    [12]

    WANG Wenbin, SHU Leizheng, LIU Jiangkai, et al. Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAISON considering dynamic and clock model errors[J]. Annual of Navigation, 2019, 66:781-802.

    [13] WANG Wenbin. Autonomous navigation and timing in cislunar space enabled by DRO-LEO formation[D]. Beijing:University of Chinese Academy of Sciences, 2020:1-129.(王文彬.基于DRO-LEO编队的地月航天器自主导航与授时研究[D].北京:中国科学院大学, 2020:1-129.)
    [14]

    PU J, LI S, ZHANG H, et al. Space-based Orbit Determination for a Lunar Low-Energy Transfer Orbit[C]//The 28th International Symposium on Space Flight Dynamics. Beijing, China, 2022-08-29, 2022:1-22.

    [15]

    LI S, PU J, GAO Y, et al. High-Fidelity autonomous navigation based on DRO-LEO Inter-Satellite links[C]//The 28th International Symposium on Space Flight Dynamics. Beijing, China, 2022-08-29, Beijing, 2022:1-25.

    [16]

    KAPLAN G H. The IAU resolutions on astronomical reference systems, time scales, and earth rotation models, CIRCULAR NO. 179[R]. Washington, D.C., 2005:1-104.

    [17]

    MOYER T D. Formulation for observed and computed values of deep space network data types for navigation[M]. California:Jet Propulsion Laboratory, 2000.

    [18] CAO Jianfeng, LI Xie, JU Bing, et al. Multi-satellite precision orbit determination and data analysis software in solar system[J]. Journal of Deep Space Exploration, 2022, 9(5):532-541(曹建峰,李勰,鞠冰,等.太阳系多星精密定轨软件[J].深空探测学报, 2022, 9(5):532-541)
    [19]

    TAPLEY B D, SCHUTZ B E, GEORGE H B. Statistical orbit determination[M]. SAN Diego:Elsevier Academic Press, 2004.

计量
  • 文章访问数:  347
  • HTML全文浏览量:  31
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-11

目录

    /

    返回文章
    返回