基于激光雷达的船舶位姿感知方法研究

兰加芬, 郑茂, 初秀民, 柳晨光, 吴勇

兰加芬, 郑茂, 初秀民, 柳晨光, 吴勇. 基于激光雷达的船舶位姿感知方法研究[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220792
引用本文: 兰加芬, 郑茂, 初秀民, 柳晨光, 吴勇. 基于激光雷达的船舶位姿感知方法研究[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220792
LAN Jiafen, ZHENG Mao, CHU Xiumin, LIU Chenguang, WU Yong. Ship Position and Attitude Sensing Method Based on Lidar[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220792
Citation: LAN Jiafen, ZHENG Mao, CHU Xiumin, LIU Chenguang, WU Yong. Ship Position and Attitude Sensing Method Based on Lidar[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220792

基于激光雷达的船舶位姿感知方法研究

基金项目: 

国家自然科学基金资助项目( 52001243); 交通运输部重点项目( SXHXGZ-2021-3)。

详细信息
    作者简介:

    兰加芬,博士研究生,主要从事水路交通感知、船舶操纵等方面的研究。lanjiafen@whut.edu.cn

    通讯作者:

    郑茂,博士,高级工程师,硕士生导师。zhengmao@whut.edu.cn

  • 中图分类号: U642

Ship Position and Attitude Sensing Method Based on Lidar

  • 摘要: 为精确测量船舶进入升船机船厢的位置、航速、偏航角等关键位姿参数,提出了自适应体素栅格长度计算方法、基于特征点的船舶位置感知方法以及自适应姿态感知方法。以长江三峡5号为例分析了关键参数的影响,并通过蓝箭208号与华嘉8号验证了感知精度。与测速轮测量结果对比表明,船舶纵向位置平均偏差0.810m,航速平均偏差0.030m/s,偏航角平均偏差0.27°。综上,提出的位姿感知方法具有良好的精度,可为船舶进出船厢航行辅助决策系统的开发提供技术支撑。
    Abstract: Objectives: To achieve accurate shore-based measurement of the ship's position, speed, yaw angle and other key motion parameters when a ship enters the ship chamber of the ship lift, a ship's position and attitude sensing method based on Lidar was developed. Methods: To address the specific challenges of point cloud occlusion and noise interference during the process of ships entering a ship lift, a method was developed with the goal of improving the accuracy and efficiency of point cloud data processing. This method utilizes the k-d tree and bounding box algorithms, along with an adaptive voxel grid length calculation method. It incorporates a feature-based ship position sensing method and an adaptive attitude perception method, enabling point cloud preprocessing as well as ship position and attitude sensing. The system's accuracy was validated using data from the Sanxia No. 5 ship, and the impact of key parameters was analyzed. Furthermore, the system's accuracy was also verified using data from Lanjian 208 and Huajia 8 ships. Results: The results show that when the voxel filter constant is 1000, the neighborhood is 10, and the search angle step is 0.25°, the ship position and attitude sensing method has good robustness and smoothness while ensuring the operation efficiency and accuracy of the system. The average deviation of the longitudinal position of the ship is 0.810m, the average deviation of the speed is 0.030m/s, and the average deviation of the yaw angle is 0.27°. Conclusions: The position and attitude sensing method proposed can meet the requirements of engineering practice, and provide technical support for the development of the navigation decision-making system for ships entering and exiting the ship lift.
  • [1] Xie Baofeng, Zhang Shukui, Hu Shenping. Numerical calculation of ship sinking in shallow water[J]. Ship Science and Technology, 2022, 44(20):4.(谢保峰,张树奎,胡甚平.浅水区域船舶航行下沉量的数值计算[J].舰船科学技术, 2022, 44(20):4.)
    [2] Wu Peng. Design of Speed Detection Warning System for Shiplift[J]. Automation Application, 2014(8):3.(吴鹏.一种升船机用船速检测预警系统的设计[J].自动化应用, 2014(8):3.)
    [3] Zhang Hui. Research on security detection and warning system of ship of Three Gorges ship lift[D]. Dalian Maritime University, 2016.(张慧.三峡升船机船舶安全检测及预警系统的研究[D].大连海事大学, 2016.)
    [4] Yan Xiaofei, Liu Zexi, Li Ying, et al. Ship berthing dynamic monitoring technology based on laser 3D vision[J]. Laser&Infrared, 2016, 46(12):7.(闫晓飞,刘泽西,李颖,等.基于激光三维视觉的船舶靠泊动态监测技术[J].激光与红外, 2016, 46(12):7.)
    [5] Zhuang Jiayuan, Xu Yuru, Wan Lei, et al. Target detection of an unmanned surface vehicle based on a radar image[J]. Journal of Harbin Enginering University, 2012, 33(2):129-135.(庄佳园,徐玉如,万磊,等.基于雷达图像的水面无人艇目标检测技术[J].哈尔滨工程大学学报, 2012, 33(2):129-135.)
    [6] Zhan Huarui, Jiang Xiaorong. Image recognition algorithm of unmanned aerial vehicle video under complex background[J]. Ship Science and Technology, 2020, 42(8):79-81.(詹华蕊,姜晓荣.复杂背景下无人艇视频视觉目标图像识别算法[J].舰船科学技术, 2020, 42(8):79-81.)
    [7] Liu Chenguang, Guo Juehan, Wu Yong, et al. 3D LiDAR Based Real-time Object Recognition System for Unmanned Surface Vehicles[J]. Journal of Mechanical Engineering, 2022, 58(4):202-211.(柳晨光,郭珏菡,吴勇,等.无人水面艇三维激光雷达目标实时识别系统[J].机械工程学报, 2022, 58(4):202-211.)
    [8] Ye Yutong, Li Bijun, Fu Liming. Rapid detection and tracking of point cloud targets in intelligent driving[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1):7.(叶语同,李必军,付黎明.智能驾驶中点云目标快速检测与跟踪[J].武汉大学学报·信息科学版, 2019, 44(1):7.)
    [9] Huang Yuanxian, Li Bijun, Huang Qi, et al. CameraLiDAR Fusion for Object Detection, Tracking and Prediction[J]. Geomatics and Information Science of Wuhan University, 2022.(黄远宪,李必军,黄琦,等.融合相机与激光雷达的目标检测、跟踪与预测[J].武汉大学学报·信息科学版, 2022.)
    [10]

    Xu X, Zhang L, Yang J, et al. LiDAR-camera calibration method based on ranging statistical characteristics and improved RANSAC algorithm[J]. Robotics and Autonomous Systems, 2021, 141:103776.

    [11]

    Carrilho A C, Galo M, Dos Santos R C. Statistical outlier detection method for airborne lidar data[J]. International Archives of the Photogrammetry, Remote Sensing&Spatial Information Sciences, 2018, 42(1).

    [12]

    Duan Y, Yang C, Li H. Low-complexity Adaptive Radius Outlier Removal Filter based on PCA for LiDAR Point Cloud Denoising[J]. Applied Optics, 2021, 60(20).

    [13]

    Premebida C, Garrote L, Asvadi A, et al. High-resolution LIDAR-based Depth Mapping using Bilateral Filter[C]. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, 2469-2474.

    [14]

    Masouleh M K, Shah-Hosseini R. Fusion of deep learning with adaptive bilateral filter for building outline extraction from remote sensing imagery[J]. Journal of Applied Remote Sensing, 2018, 12(4).

    [15] Cui Xiaodong, Shen Wei, Shuai Chenfu, et al. Preliminary research and application analysis of multibeam point cloud filtering algorithm[J]. Hydrographic Surveying and Charting, 2021, 41(5):5.(崔晓冬,沈蔚,帅晨甫,等.多波束点云滤波算法初步研究及适用性分析[J].海洋测绘, 2021, 41(5):5.)
    [16]

    Agarwal P, Husain A, Ranjan R K. Pole Like Object Detection using PCA in Terrestrial LiDAR System[C]. Journal of Physics:Conference Series. IOP Publishing, 2021, 2089(1):012004.

    [17]

    Guo S, Zheng R, Wang S, et al. A LIDAR SLAM with PCA-based feature extraction and two-stage matching[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-11.

    [18]

    Grabner A, Roth P M, Lepetit V. 3D pose estimation and 3d model retrieval for objects in the wild[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:3022-3031.

    [19]

    Buch A G, Petersen H G, Krüger N. Local shape feature fusion for improved matching, pose estimation and 3D object recognition[J]. SpringerPlus, 2016, 5(1):1-33.

    [20]

    Gao Q, Yin D, Luo Q, et al. Minimum elastic bounding box algorithm for dimension detection of 3D objects:a case of airline baggage measurement[J]. IET Image Processing, 2018, 12(8):1313-1321.

    [21]

    Zhang X, Xu W, Dong C, et al. Efficient L-shape fitting for vehicle detection using laser scanners[C]. 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017.

    [22] Gao Guang. Research on Lidar Imaging Simulation and Point Cloud Ship Position Estimation[D]. Harbin Engineering University, 2020.(高广.激光雷达成像模拟及点云船舶位姿估计研究[D].哈尔滨工程大学, 2020.)
    [23]

    Lü D, Sun J, Li Q, et al. Fully automatic registration of structured objects based on laser radar range images[J]. International Journal for Light and Electron Optics, 2015, 126(23):4698-4703.

    [24]

    Lü D, Sun J, Li Q, et al. 3D pose estimation of ground rigid target based on ladar range image[J]. Applied Optics, 2013, 52(33):8073-8081.

    [25] Zhang Nan, Sun Jianfeng, Jiang Peng, et al. Pose estimation algorithms for lidar scene based on point normal vector[J]. Infrared and Laser Engineering, 2020, 49(1):8.(张楠,孙剑峰,姜鹏,等.激光雷达场景三维姿态点法向量估计方法[J].红外与激光工程, 2020, 49(1):8.)
    [26]

    Greenspan M, Yurick M. Approximate K-D tree search for efficient ICP[C]. Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3D IM 2003. Proceedings. IEEE, 2003:442-448.

计量
  • 文章访问数:  528
  • HTML全文浏览量:  33
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-11

目录

    /

    返回文章
    返回