基于地理加权建模技术的武汉市土地资源承载力评价研究

卢宾宾, 田小溪, 秦思娴, 史祎琳, 李建松

卢宾宾, 田小溪, 秦思娴, 史祎琳, 李建松. 基于地理加权建模技术的武汉市土地资源承载力评价研究[J]. 武汉大学学报 ( 信息科学版), 2025, 50(3): 430-438. DOI: 10.13203/j.whugis20220778
引用本文: 卢宾宾, 田小溪, 秦思娴, 史祎琳, 李建松. 基于地理加权建模技术的武汉市土地资源承载力评价研究[J]. 武汉大学学报 ( 信息科学版), 2025, 50(3): 430-438. DOI: 10.13203/j.whugis20220778
LU Binbin, TIAN Xiaoxi, QIN Sixian, SHI Yilin, LI Jiansong. Urban Land Carrying Capacity Evaluation of Wuhan City with Geographically Weighted Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 430-438. DOI: 10.13203/j.whugis20220778
Citation: LU Binbin, TIAN Xiaoxi, QIN Sixian, SHI Yilin, LI Jiansong. Urban Land Carrying Capacity Evaluation of Wuhan City with Geographically Weighted Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 430-438. DOI: 10.13203/j.whugis20220778

基于地理加权建模技术的武汉市土地资源承载力评价研究

基金项目: 

国家自然科学基金 42071368

中央高校自主科研项目 2042022dx0001

详细信息
    作者简介:

    卢宾宾,博士,副教授,主要从事空间统计、地理加权回归分析、地理加权建模技术等方面的研究。binbinlu@whu.edu.cn

    卢宾宾,博士,副教授,主要从事空间统计、地理加权回归分析、地理加权建模技术等方面的研究。binbinlu@whu.edu.cn

Urban Land Carrying Capacity Evaluation of Wuhan City with Geographically Weighted Techniques

  • 摘要:

    在中国全面推进生态文明建设的背景下,资源环境承载力监测评价研究具有重要的理论和实践意义。随着城镇化进程的高速推进,城市土地资源逐步成为城市发展的核心资源要素,吸引了众多学者的关注。但在以往研究中,评价分析方法多以宏观的全局统计为主,难以满足城市尺度下进行精细尺度分析评价的需求,也无法体现评价指标及其关系所呈现的空间异质性或非平稳性特征。以武汉市土地资源承载力评价为例,采用地理加权汇总统计、地理加权主成分分析和地理加权回归分析等基础地理加权建模技术实现了集成评价、影响要素和成因分析,更加合理地阐释了武汉市建成区土地承载压力分布及其影响要素。结果证明,地理加权建模技术框架能够实现城市土地资源承载力精细化评价,从全新的视角实现单项指标分析与综合评价,而随着地理加权建模技术的拓展与演化,分析层次更加丰富,为更多场景与领域的应用提供可行的技术方案。

    Abstract:
    Objectives 

    With the rapid urbanization in China, urban land resource has become a key part in urban development, and attracted more and more attentions. However, global methods were traditionally adopted for its carrying capacity evaluation and analysis, which largely ignored the spatial heterogeneities or non-stationarities in the data relationships.

    Methods 

    In this paper, we proposed a technical framework to evaluate and analyze the urban land carrying capacity with geographically weighted (GW) techniques from local perspective. We exemplified this framework with a case study in Wuhan City. In details, we adopted GW summary statistics, GW principal component analysis and GW regression to conduct the evaluation and analysis.

    Results 

    The comprehensive pressure of land carrying capacity shows a decaying trend from the city center to the outside areas, to which population density and floor area ratio contribute the most. Moreover, different factors present spatially varying influences on the comprehensive pressure of land carrying capacity.

    Conclusions 

    The proposed framework with GW techniques works well on evaluating and analyzing urban land carrying capacity from local perspective, and its evolution is still ongoing with more local techniques involved, which makes it be applicable in more cases and scenarios.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220778
  • 图  1   城市土地承载压力评价技术流程图

    Figure  1.   Technical Flowchart of Urban Land Resource Carrying Capacity Evaluation

    图  2   武汉市建成区土地承载压力典型单项指标

    Figure  2.   Typical Indicators of Land Carrying Capacity Pressure in Built-up Area of Wuhan City

    图  3   武汉市建成区土地综合承载压力指标

    Figure  3.   Comprehensive Indicator of Land Carrying Capacity in Built-up Area of Wuhan City

    图  4   地理加权主成分评价指标第一主成分载荷图

    Figure  4.   Glyph Plot of Loadings of the First Principal Component from GWPCA Results

    图  5   房价与土地承载压力综合评价指标地理加权相关系数空间分布图

    Figure  5.   Geographically Weighted Correlation Coefficients Between Comprehensive Indicator of Land Carrying Capacity and House Price

    图  6   GWR模型房价系数估计空间分布图

    Figure  6.   Coefficient Estimates of House Price of GWR Model

    图  7   GWR模型局部R2值空间分布图

    Figure  7.   Local R2 Values of GWR Model

    表  1   各类产业用地数据说明

    Table  1   Land Data Description of Each Industry

    产业类型产业用地数据
    第一产业地表覆盖分类中的耕地、园地
    第二产业工业用地、地理国情城镇功能单元中的工矿企业
    第三产业第三产业增加值包括教育医疗、交通运输仓储和邮政业、批发和零售业、住宿和餐饮业、金融业、房地产业、其他服务业
    下载: 导出CSV

    表  2   土地承载压力指标

    Table  2   Indices of Land Resource Carrying Pressure

    评价指标城市生活空间工业生产空间
    人口常住人口密度
    就业(三产)人口密度就业(二产)人口密度
    流动人口密度
    经济地均GDP(三产为主)地均GDP(二产为主)
    地均财政收入
    地均固定资产投资额
    建设容积率
    建筑密度
    地均公园绿地面积
    交通道路网密度
    公交、轨道交通线路密度
    夜间道路停车密度
    拥堵指数
    下载: 导出CSV

    表  3   GWPCA第一主成分载荷量

    Table  3   Loadings of the First Principal Component from GWPCA Results

    统计指标人口密度地均GDP容积率建筑密度拥堵里程占比
    最小值0.5480.3270.4680.3690.094
    最大值0.6270.3770.5030.5020.411
    平均值0.5920.3580.4820.4350.292
    标准差0.0240.0110.0090.0460.106
    下载: 导出CSV

    表  4   线性回归分析结果

    Table  4   Results of Linear Regression

    解释变量估计值
    POI混合度-0.13
    通勤指数-0.17
    房价均价0.27
    公交线路重复度0.015
    轨道交通站点数-0.004
    下载: 导出CSV
  • [1] 张超, 杨艳昭, 封志明, 等. 基于人粮关系的“一带一路” 沿线国家土地资源承载力时空格局研究[J]. 自然资源学报, 2022, 37(3): 616-626.

    ZHANG Chao, YANG Yanzhao, FENG Zhiming, et al. Spatio-temporal Patterns of the Land Carrying Capacity in the Belt and Road Region Based on Human-Cereals Relationship[J]. Journal of Natural Resources, 2022, 37(3): 616-626.

    [2] 周侃, 樊杰, 孙勇. 长江经济带农村相对贫困格局及区域承载力约束机理[J]. 农业工程学报, 2021, 37(11): 249-258.

    ZHOU Kan, FAN Jie, SUN Yong. Spatial Pattern of Rural Relative Poverty and Constraint Mechanism of Regional Carrying Capacity in the Yangtze River Economic Belt[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 249-258.

    [3]

    YANG N N, LI J S, LU B B, et al. Exploring the Spatial Pattern and Influencing Factors of Land Carrying Capacity in Wuhan[J]. Sustainability, 2019, 11(10): 2786.

    [4] 王晟. 杭州市水资源承载力评价及提升路径[J]. 水土保持通报, 2018, 38(3): 307-311.

    WANG Sheng. Evaluation and Improvement Approaches of Water Resources Carrying Capacity in Hangzhou City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 307-311.

    [5] 张静, 曾维华, 吴舜泽, 等. 一种新的区域环境承载力评价预警方法及应用[J]. 生态经济, 2016, 32(2): 19-22.

    ZHANG Jing, ZENG Weihua, WU Shunze, et al. Potential Assessment on Development and Utilization of Regional Environment Carrying Capacity[J]. Ecological Economy, 2016, 32(2): 19-22.

    [6] 纪学朋, 白永平, 杜海波, 等. 甘肃省生态承载力空间定量评价及耦合协调性[J]. 生态学报, 2017, 37(17): 5861-5870.

    JI Xuepeng, BAI Yongping, DU Haibo, et al. Research on the Spatial Quantitative Evaluation and Coupling Coordination Degree of Ecological Carrying Capacity in Gansu Province[J]. Acta Ecologica Sinica, 2017, 37(17): 5861-5870.

    [7] 徐勇, 张雪飞, 李丽娟, 等. 我国资源环境承载约束地域分异及类型划分[J]. 中国科学院院刊, 2016, 31(1): 34-43.

    XU Yong, ZHANG Xuefei, LI Lijuan, et al. Regional Differentiation and Classification for Constraints of National Resources and Environment Carrying[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(1): 34-43.

    [8] 陆大道. 我国的城镇化进程与空间扩张[J]. 城市规划学刊, 2007(4): 47-52.

    LU Dadao. Urbanization Process and Spatial Sprawl in China[J]. Urban Planning Forum, 2007(4): 47-52.

    [9] 罗名海, 蒋子龙, 程琦, 等. 地理国情在武汉市土地资源承载力评价中的应用[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2317-2324.

    LUO Minghai, JIANG Zilong, CHENG Qi, et al. Carrying Capacity Evaluation of Land Resources in Wuhan Based on the Geographical Condition Monitoring[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2317-2324.

    [10]

    GOODCHILD M F. The Validity and Usefulness of Laws in Geographic Information Science and Geo-graphy[J]. Annals of the Association of American Geographers, 2004, 94(2): 300-303.

    [11]

    BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.

    [12]

    Fotheringham A S, Brunsdon C, Charlton M, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships[M].Chichester: Wiley, 2002.

    [13]

    NAKAYA T, FOTHERINGHAM A S, BRUNSDON C, et al. Geographically Weighted Poisson Regression for Disease Association Mapping[J]. Statistics in Medicine, 2005, 24(17): 2695-2717.

    [14]

    DONG G P, NAKAYA T, BRUNSDON C. Geographically Weighted Regression Models for Ordinal Categorical Response Variables: An Application to Geo-Referenced Life Satisfaction Data[J]. Computers, Environment and Urban Systems, 2018, 70: 35-42.

    [15]

    FOTHERINGHAM A S, YANG W B, KANG W. Multiscale Geographically Weighted Regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265.

    [16]

    LU B B, BRUNSDON C, CHARLTON M, et al. Geographically Weighted Regression with Parameter-Specific Distance Metrics[J]. International Journal of Geographical Information Science, 2017, 31(5): 982-998.

    [17]

    HUANG B, WU B, BARRY M. Geographically and Temporally Weighted Regression for Modeling Spatiotemporal Variation in House Prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401.

    [18]

    BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically Weighted Summary Statistics—A Framework for Localised Exploratory Data Analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6): 501-524.

    [19]

    HARRIS P, BRUNSDON C, CHARLTON M. Geographically Weighted Principal Components Analysis[J]. International Journal of Geographical Information Science, 2011, 25(10): 1717-1736.

    [20]

    BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically Weighted Discriminant Analysis[J]. Geographical Analysis, 2007, 39(4): 376-396.

    [21] 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366.

    LU Binbin, GE Yong, QIN Kun, et al. A Review on Geographically Weighted Regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356-1366.

    [22] 程琦, 秦思娴, 李建松, 等. 面向城市级资源环境承载力评价的要素尺度下推技术研究[J]. 测绘地理信息, 2022, 47(5): 69-72.

    CHENG Qi, QIN Sixian, LI Jiansong, et al. Scale-Down Techniques of Factors for Evaluation of City-Level Resource and Environment Carrying Capacity[J]. Journal of Geomatics, 2022, 47(5): 69-72.

    [23]

    DU Z H, WANG Z Y, WU S S, et al. Geographically Neural Network Weighted Regression for the Accurate Estimation of Spatial Non-Stationarity[J]. International Journal of Geographical Information Science, 2020, 34(7): 1353-1377.

    [24]

    LU B B, HU Y G, YANG D Y, et al. GWmodelS: A Software for Geographically Weighted Models[J]. SoftwareX, 2023, 21: 101291.

    [25]

    LU B B, HARRIS P, CHARLTON M, et al. The GWmodel R Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Geo⁃spatial Information Science, 2014, 17(2): 85-101.

图(7)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2025-03-04

目录

    /

    返回文章
    返回