Urban Land Carrying Capacity Evaluation of Wuhan City with Geographically Weighted Techniques
-
摘要:
在中国全面推进生态文明建设的背景下,资源环境承载力监测评价研究具有重要的理论和实践意义。随着城镇化进程的高速推进,城市土地资源逐步成为城市发展的核心资源要素,吸引了众多学者的关注。但在以往研究中,评价分析方法多以宏观的全局统计为主,难以满足城市尺度下进行精细尺度分析评价的需求,也无法体现评价指标及其关系所呈现的空间异质性或非平稳性特征。以武汉市土地资源承载力评价为例,采用地理加权汇总统计、地理加权主成分分析和地理加权回归分析等基础地理加权建模技术实现了集成评价、影响要素和成因分析,更加合理地阐释了武汉市建成区土地承载压力分布及其影响要素。结果证明,地理加权建模技术框架能够实现城市土地资源承载力精细化评价,从全新的视角实现单项指标分析与综合评价,而随着地理加权建模技术的拓展与演化,分析层次更加丰富,为更多场景与领域的应用提供可行的技术方案。
Abstract:ObjectivesWith the rapid urbanization in China, urban land resource has become a key part in urban development, and attracted more and more attentions. However, global methods were traditionally adopted for its carrying capacity evaluation and analysis, which largely ignored the spatial heterogeneities or non-stationarities in the data relationships.
MethodsIn this paper, we proposed a technical framework to evaluate and analyze the urban land carrying capacity with geographically weighted (GW) techniques from local perspective. We exemplified this framework with a case study in Wuhan City. In details, we adopted GW summary statistics, GW principal component analysis and GW regression to conduct the evaluation and analysis.
ResultsThe comprehensive pressure of land carrying capacity shows a decaying trend from the city center to the outside areas, to which population density and floor area ratio contribute the most. Moreover, different factors present spatially varying influences on the comprehensive pressure of land carrying capacity.
ConclusionsThe proposed framework with GW techniques works well on evaluating and analyzing urban land carrying capacity from local perspective, and its evolution is still ongoing with more local techniques involved, which makes it be applicable in more cases and scenarios.
-
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220778
-
表 1 各类产业用地数据说明
Table 1 Land Data Description of Each Industry
产业类型 产业用地数据 第一产业 地表覆盖分类中的耕地、园地 第二产业 工业用地、地理国情城镇功能单元中的工矿企业 第三产业 第三产业增加值包括教育医疗、交通运输仓储和邮政业、批发和零售业、住宿和餐饮业、金融业、房地产业、其他服务业 表 2 土地承载压力指标
Table 2 Indices of Land Resource Carrying Pressure
评价指标 城市生活空间 工业生产空间 人口 常住人口密度 就业(三产)人口密度 就业(二产)人口密度 流动人口密度 经济 地均GDP(三产为主) 地均GDP(二产为主) 地均财政收入 地均固定资产投资额 建设 容积率 建筑密度 地均公园绿地面积 — 交通 道路网密度 公交、轨道交通线路密度 夜间道路停车密度 拥堵指数 表 3 GWPCA第一主成分载荷量
Table 3 Loadings of the First Principal Component from GWPCA Results
统计指标 人口密度 地均GDP 容积率 建筑密度 拥堵里程占比 最小值 0.548 0.327 0.468 0.369 0.094 最大值 0.627 0.377 0.503 0.502 0.411 平均值 0.592 0.358 0.482 0.435 0.292 标准差 0.024 0.011 0.009 0.046 0.106 表 4 线性回归分析结果
Table 4 Results of Linear Regression
解释变量 估计值 POI混合度 -0.13 通勤指数 -0.17 房价均价 0.27 公交线路重复度 0.015 轨道交通站点数 -0.004 -
[1] 张超, 杨艳昭, 封志明, 等. 基于人粮关系的“一带一路” 沿线国家土地资源承载力时空格局研究[J]. 自然资源学报, 2022, 37(3): 616-626. ZHANG Chao, YANG Yanzhao, FENG Zhiming, et al. Spatio-temporal Patterns of the Land Carrying Capacity in the Belt and Road Region Based on Human-Cereals Relationship[J]. Journal of Natural Resources, 2022, 37(3): 616-626.
[2] 周侃, 樊杰, 孙勇. 长江经济带农村相对贫困格局及区域承载力约束机理[J]. 农业工程学报, 2021, 37(11): 249-258. ZHOU Kan, FAN Jie, SUN Yong. Spatial Pattern of Rural Relative Poverty and Constraint Mechanism of Regional Carrying Capacity in the Yangtze River Economic Belt[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 249-258.
[3] YANG N N, LI J S, LU B B, et al. Exploring the Spatial Pattern and Influencing Factors of Land Carrying Capacity in Wuhan[J]. Sustainability, 2019, 11(10): 2786.
[4] 王晟. 杭州市水资源承载力评价及提升路径[J]. 水土保持通报, 2018, 38(3): 307-311. WANG Sheng. Evaluation and Improvement Approaches of Water Resources Carrying Capacity in Hangzhou City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 307-311.
[5] 张静, 曾维华, 吴舜泽, 等. 一种新的区域环境承载力评价预警方法及应用[J]. 生态经济, 2016, 32(2): 19-22. ZHANG Jing, ZENG Weihua, WU Shunze, et al. Potential Assessment on Development and Utilization of Regional Environment Carrying Capacity[J]. Ecological Economy, 2016, 32(2): 19-22.
[6] 纪学朋, 白永平, 杜海波, 等. 甘肃省生态承载力空间定量评价及耦合协调性[J]. 生态学报, 2017, 37(17): 5861-5870. JI Xuepeng, BAI Yongping, DU Haibo, et al. Research on the Spatial Quantitative Evaluation and Coupling Coordination Degree of Ecological Carrying Capacity in Gansu Province[J]. Acta Ecologica Sinica, 2017, 37(17): 5861-5870.
[7] 徐勇, 张雪飞, 李丽娟, 等. 我国资源环境承载约束地域分异及类型划分[J]. 中国科学院院刊, 2016, 31(1): 34-43. XU Yong, ZHANG Xuefei, LI Lijuan, et al. Regional Differentiation and Classification for Constraints of National Resources and Environment Carrying[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(1): 34-43.
[8] 陆大道. 我国的城镇化进程与空间扩张[J]. 城市规划学刊, 2007(4): 47-52. LU Dadao. Urbanization Process and Spatial Sprawl in China[J]. Urban Planning Forum, 2007(4): 47-52.
[9] 罗名海, 蒋子龙, 程琦, 等. 地理国情在武汉市土地资源承载力评价中的应用[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2317-2324. LUO Minghai, JIANG Zilong, CHENG Qi, et al. Carrying Capacity Evaluation of Land Resources in Wuhan Based on the Geographical Condition Monitoring[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2317-2324.
[10] GOODCHILD M F. The Validity and Usefulness of Laws in Geographic Information Science and Geo-graphy[J]. Annals of the Association of American Geographers, 2004, 94(2): 300-303.
[11] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.
[12] Fotheringham A S, Brunsdon C, Charlton M, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships[M].Chichester: Wiley, 2002.
[13] NAKAYA T, FOTHERINGHAM A S, BRUNSDON C, et al. Geographically Weighted Poisson Regression for Disease Association Mapping[J]. Statistics in Medicine, 2005, 24(17): 2695-2717.
[14] DONG G P, NAKAYA T, BRUNSDON C. Geographically Weighted Regression Models for Ordinal Categorical Response Variables: An Application to Geo-Referenced Life Satisfaction Data[J]. Computers, Environment and Urban Systems, 2018, 70: 35-42.
[15] FOTHERINGHAM A S, YANG W B, KANG W. Multiscale Geographically Weighted Regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265.
[16] LU B B, BRUNSDON C, CHARLTON M, et al. Geographically Weighted Regression with Parameter-Specific Distance Metrics[J]. International Journal of Geographical Information Science, 2017, 31(5): 982-998.
[17] HUANG B, WU B, BARRY M. Geographically and Temporally Weighted Regression for Modeling Spatiotemporal Variation in House Prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401.
[18] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically Weighted Summary Statistics—A Framework for Localised Exploratory Data Analysis[J]. Computers, Environment and Urban Systems, 2002, 26(6): 501-524.
[19] HARRIS P, BRUNSDON C, CHARLTON M. Geographically Weighted Principal Components Analysis[J]. International Journal of Geographical Information Science, 2011, 25(10): 1717-1736.
[20] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically Weighted Discriminant Analysis[J]. Geographical Analysis, 2007, 39(4): 376-396.
[21] 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1356-1366. LU Binbin, GE Yong, QIN Kun, et al. A Review on Geographically Weighted Regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356-1366.
[22] 程琦, 秦思娴, 李建松, 等. 面向城市级资源环境承载力评价的要素尺度下推技术研究[J]. 测绘地理信息, 2022, 47(5): 69-72. CHENG Qi, QIN Sixian, LI Jiansong, et al. Scale-Down Techniques of Factors for Evaluation of City-Level Resource and Environment Carrying Capacity[J]. Journal of Geomatics, 2022, 47(5): 69-72.
[23] DU Z H, WANG Z Y, WU S S, et al. Geographically Neural Network Weighted Regression for the Accurate Estimation of Spatial Non-Stationarity[J]. International Journal of Geographical Information Science, 2020, 34(7): 1353-1377.
[24] LU B B, HU Y G, YANG D Y, et al. GWmodelS: A Software for Geographically Weighted Models[J]. SoftwareX, 2023, 21: 101291.
[25] LU B B, HARRIS P, CHARLTON M, et al. The GWmodel R Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Geo⁃spatial Information Science, 2014, 17(2): 85-101.