Global Image Orientation Method for PTZ Camera with Pure Rotation
-
摘要: Pan-tilt-zoom (PTZ)相机能通过绕光心纯旋转以获得更大视场,被广泛应用于监控系统中。针对在处理PTZ相机影像定向时现有运动恢复结构(structure from motion,SfM)方法存在适用性不足的问题,参考全局式SfM的思路,提出一种面向PTZ相机纯旋转运动的影像定向方法。首先,优选部分像对进行内定向,估计影像的内方位元素;然后,对所有影像进行全局式外定向,估计影像的外方位角元素;最后,利用无物方点的光束法平差优化内方位元素和外方位角元素。通过使用仿真数据和真实数据进行实验,表明了该方法可弥补现有SfM方法的不足,成功实现对PTZ相机纯旋转时的影像定向;在与商用软件对比方面,得到的外定向精度更高,同时具有计算效率上的优势。该方法并不局限于PTZ相机影像的定向,对于多镜头相机、全向相机等设备采集的纯旋转影像的定向问题具有通用性。Abstract: Objectives: Pan-tilt-zoom(PTZ) camera is widely used in surveillance systems due to its wide field of view and high resolution. The camera mounted on the gimbal can only make pure rotation motion around the optical center. The optical center overlap of images makes it impossible to use existing Structure from Motion (SfM) methods for purely rotated images orientation. In order to estimate the elements of interior and exterior orientation in the free net of a set of PTZ camera images with pure rotation, a global image orientation method for PTZ camera with pure rotation was proposed, which motivated by the idea of the global SfM. Methods: Compared with the general SfM method, the similarities are feature extraction and feature matching, and the differences are interior orientation, exterior orientation and bundle adjustment. Firstly, partial image pairs are selected for inner orientation to estimate the elements of interior orientation. Then, global exterior orientation was implemented for all images, and the elements of exterior orientation were estimated. Finally, the elements of interior and exterior orientation are optimized by bundle adjustment with no object 3d point. Results: Experiments on simulation data and real data prove the feasibility and accuracy of the proposed method. In the simulation data experiments, the maximum error of the focal length and the principal point is 3.321 pixels, and most of the errors are less than 1 pixel. The maximum rotation errors of the four datasets are 0.116 degrees, 0.320 degrees, 0.103 degrees, 0.125 degrees. In the real data experiments, the maximum reprojection errors of the checkpoints are 4.919 pixels and 4.758 pixels for the two datasets, respectively. Conclusions: Compared with the existing global SfM method, the proposed method can successfully orient the images of PTZ camera with pure rotation. In addition, compared with other commercial software, the exterior orientation accuracy of the proposed method is higher, and it also has the advantage of computational efficiency. The method presented is not limited to PTZ camera images, and it has universality for other purely rotated images orientation problems.
-
-
[1] Sinha S N. Pan-Tilt-Zoom (PTZ) Camera[M]//Computer Vision: A Reference Guide. Cham: Springer International Publishing, 2021: 941-947.
[2] Gao Fei,Wang Meizhen,Liu Xuejun,et al.A Road Network Coverage Optimization Method in Surveillance Camera Network[J].Geomatics and Information Science of Wuhan University,2020,45(3):362-373(高飞,王美珍,刘学军,等.一种监控摄像机网络‐路网覆盖优化调度方法[J].武汉大学学报·信息科学版,2020,45(3):362-373) [3] Yong H, Huang J, Xiang W, et al. Panoramic background image generation for PTZ cameras[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3162-3176.
[4] Ullah F, Kwon O J, Choi S. Generation of a panorama compatible with the JPEG 360 international standard using a single PTZ camera[J]. Applied Sciences, 2021, 11(22): 11019.
[5] Chen J, Zhu F, Little J J. A two-point method for PTZ camera calibration in sports[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018: 287-295.
[6] Homayounfar N, Fidler S, Urtasun R. Sports field localization via deep structured models[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5212-5220.
[7] Ma Qingping. Object Detection and Location System Based on PTZ Active Multi-camera[D]. University of ElectronicScinece and Techology of China, 2014. (马庆平. 多PTZ主动摄像头的类目标检测定位系统[D]. 电子科技大学,2014.) [8] Yun K, Kim H, Bae K, et al. Unsupervised moving object detection through background models for ptz camera[C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021: 3201-3208.
[9] Simonsen C P, Theisson F M, Holtskog Ø, et al. Detecting and locating boats using a PTZ camera with both optical and thermal sensors[C]//15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020. SCITEPRESS Digital Library, 2020: 395-403.
[10] Zhang Xing,Liu Tao,Sun Longpei,et al.A Visual-Inertial Collaborative Indoor Localization Method for Multiple Moving Pedestrian Targets[J]. Geomatics and Information Science of Wuhan University,2021,46(5):672-680(张星,刘涛,孙龙培,等. 一种视觉与惯性协同的室内多行人目标定位方法[J].武汉大学学报·信息科学版,2021,46(5):672-680) [11] Wu Z, Radke R J. Keeping a pan-tilt-zoom camera calibrated[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 35(8): 1994-2007.
[12] Jain L C. Dynamic Self-Calibration Algorithm for PTZ Camera in Traffic Scene[J]. Information Technology and Intelligent Transportation Systems, 2020, 323: 176.
[13] Song J, Song H, Wang S. PTZ camera calibration based on improved DLT transformation model and vanishing Point constraints[J]. Optik, 2021, 225: 165875.
[14] Xie Jingting, Lin Xiaohu, Wang Fuhong, et al. Extrinsic Calibration Method for LiDAR and Camera with Joint Point-Line-Plane Constraints[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1916-1923(谢婧婷,蔺小虎,王甫红,等. 一种点线面约束的激光雷达和相机标定方法[J]. 武汉大学学报·信息科学版,2021,46(12):1916-1923) [15] Junejo I N, Foroosh H. Optimizing PTZ camera calibration from two images[J]. Machine Vision and Applications, 2012, 23: 375-389.
[16] Zheng Keyin. Self-calibration and Error Analysis for Rotating Camera[D]. Shanxi University, 2015. (郑珂银. 旋转摄像机自标定方法及误差分析[D]. 山西大学, 2015.) [17] Zhang C, Rameau F, Kim J, et al. Deepptz: Deep self-calibration for ptz cameras[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020: 1041-1049.
[18] Chen Wu,Jiang San,Li Qingquan,et al.Recent Research of Incremental Structure from Motion for Unmanned Aerial Vehicle Images[J].Geomatics and Information Science of Wuhan University,2022,47(10):1662-1674(陈武,姜三,李清泉,等. 无人机影像增量式运动恢复结构研究进展[J]. 武汉大学学报·信息科学版,2022,47(10):1662-1674) [19] Moulon P, Monasse P, Marlet R. Global fusion of relative motions for robust, accurate and scalable structure from motion[C]//Proceedings of the IEEE international conference on computer vision. 2013: 3248-3255.
[20] Shan Jie. A Brief History and Essentials of Bundle Adjustment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1797-1810(单杰. 光束法平差简史与概要[J]. 武汉大学学报:信息科学版, 2018,43(12): 1797-1810) [21] Cefalu A, Haala N, Fritsch D. Structureless bundle adjustment with self-calibration using accumulated constraints[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 3: 3-9.
[22] Moulon P, Monasse P, Marlet R. Adaptive structure from motion with a contrario model estimation[C]//Computer Vision– ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part IV 11. Springer Berlin Heidelberg, 2013: 257-270.
[23] Hartley,Zissermana. Multiple View Geometry in Computer Vision[M]. Hefei: Anhui University Press,2002:229.(哈特利R,Hartley Richard,齐瑟曼A,等.计算机视觉中的多视图几何[M].安徽大学出版社,2002:229) [24] Parra A, Chng S F, Chin T J, et al. Rotation coordinate descent for fast globally optimal rotation averaging[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4298-4307.
[25] Lee S H, Civera J. Rotation-only bundle adjustment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 424-433.
[26] Zach C, Klopschitz M, Pollefeys M. Disambiguating visual relations using loop constraints[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2010: 1426-1433.
[27] Ai H, Cao Z, Zhu J, et al. Deep learning for omnidirectional vision: A survey and new perspectives[J]. arXiv preprint arXiv:2205.10468, 2022.
[28] Deng Fei, Wu Yousi, Hu Yulei, Cui Hongxia. Position and Pose Estimation of Spherical Panoramic Image with Improved EPnP Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6): 677-684. (邓非, 吴幼丝, 胡玉雷, 等. 球形全景影像位姿估计的改进EPnP算法[J]. 测绘学报, 2016, 45(006): 677-684.) [29] CHEN Yulun,CHEN Danni,LI Xi.Analysis of Night Light Patterns Using Urban Public Camera[J].Geomatics and Information Science of Wuhan University,2022,47(8):1318-1327(陈宇伦,陈丹妮,李熙. 利用城市公共摄像头分析夜间灯光变化规律[J].武汉大学学报·信息科学版,2022,47(8):1318-1327) [30] Chen Jun,Liu Jianjun,Tian Haibo.Basic Directions and Technological Path for Building 3D Realistic Geospatial Scene in China[J].Geomatics and Information Science of Wuhan University,2022,47(10):1568-1575( 陈军,刘建军,田海波. 实景三维中国建设的基本定位与技术路径[J]. 武汉大学学报·信息科学版, 2022, 47(10): 1568-1575) -
期刊类型引用(14)
1. 刘学习,朱守庆,陈国,张克非,郑南山,刘婧璇. 基于全球统一坐标框架的GNSS精密轨道与钟差产品一致性分析. 测绘学报. 2025(03): 432-447 . 百度学术
2. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 . 百度学术
3. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 . 百度学术
4. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 . 百度学术
5. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 . 百度学术
6. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 . 百度学术
7. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 . 百度学术
8. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 . 百度学术
9. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 . 百度学术
10. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 . 百度学术
11. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 . 百度学术
12. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 . 百度学术
13. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 . 百度学术
14. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 116
- HTML全文浏览量: 4
- PDF下载量: 26
- 被引次数: 24