Identification of Debris-covered Koxkar Glacier in Mt. Tianshan and Study on Its Velocity Characteristics
-
Abstract:
Objectives: The spectral characteristics of supraglacial debris are extremely similar to those of rocks, which is difficult to retrieve by semi-automatic or automatic interpretation of remote sensing. Obtaining the extent of supraglacial debris and glacial surface flow velocity can help to understand the characteristics of glacier mass balance about debris-covered glaciers. Methods: The Random Forest method based on feature optimizatio is used to identify the supraglacial debris of the Koxkar Glacier. To increase the distinguishability between supraglacial debris and rocks, sentinel-2 images, remote sensing indexes, terrain features and texture features are also added for image classification. Glacial flow velocity is estimated using the Coregistration of Optical Sensed Images and Correlation (COSI-Corr) method, which is considered to be one of the most effective methods for small-scale and high-precision estimation of glacial flow velocity. Results: Compared with other machine learning classification methods, the Random Forest method based on feature optimization can effectively avoid the misclassification between supraglacial debris and rock. The result of identification shows that the area of debris is about 24.6 km2, accounting for 31.7% of the total area of Koxkar Glacier. The results of glacial flow velocity show that the maximum average annual flow velocity occurs at about 4380 m above sea level in the eastern branch and can reach 145.9 m·a-1 in 2020. The flow velocity reduces to 0~10 m·a-1 with the decreasing elevation. The flow velocity during the ablation period is much higher than the annual mean velocity. The differences of velocity on the glacier tongue are induced by differences of altitude, ice lake outburst, collapse of Subglacial meltwater channeland and other factors. The changes of flow velocity in the study area from 1989 to 2021 shows that the flow velocity in the upper and middle part of the glacier continues to accelerate with the increase of surface temperature. In the range from 3090 m to 3500 m above sea level located in the lower part of the glacier, the flow velocity decreases continuously due to the accumulation of debris and the continuous thinning of glacier tongue. Conclusion: (1) Compared with other machine learning classification methods, the accuracy of the Random Forest method based on feature optimization has been significantly improved in identification of supraglacial debris. (2) In the past 30 years, the overall flow velocity of debris-covered Koxkar Glacier is slowly increasing with obviously spatio-temporal differences, and the glacier mass balance of the glacier below 3500 m above sea level is in a continuous deficit state.
-
Keywords:
- supraglacial debris identification /
- random forest /
- glacier velocity /
- COSI-Corr /
- Koxkar Glacier
-
-
[1] Qin Dahe, Ding Yihui, Su Jilan, et al. Assessment of Climate and Environment Changes in China(I):Climate and Environment Changes in China and Their Projection[J]. Advances in Climate Change Research, 2005, 1(1):4-9(秦大河, 丁一汇, 苏纪兰, 等. 中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J]. 气候变化研究进展, 2005, 1(1):4-9) [2] Sorg A, Bolch T, Stoffel M, et al. Climate Change Impacts on Glaciers and Runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10):725-731
[3] Zhang Yong, Liu Shiyin. Research Progress on Debris Thickness Estimation and Its Effect on Debris-covered Glaciers in Western China[J]. Acta Geographica Sinica, 2017, 72(9):1606-1620(张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017, 72(9):1606-1620) [4] Guillet G, King O, Lv M, et al. A Regionally Resolved Inventory of High Mountain Asia Surge-Type Glaciers, Derived from a Multi-factor Remote Sensing Approach[J]. The Cryosphere, 2022, 16(2):603-623.
[5] Wang Xiaowen, Liu Qiao, Zhang Bo, et al. Monitoring and Analyzing Collapse of KLSK-37 Glacier Tongue in Recent 40 Years with Multi-source Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1687-1696(王晓文, 刘巧, 张波, 等. 近40 a昆仑山口37号冰川冰舌滑塌多源遥感监测与分析[J]. 武汉大学学报(信息科学版), 2020, 45(11):1687-1696) [6] Shukla A, Arora M K, Gupta R P. Synergistic Approach for Mapping Debris-covered Glaciers Using Optical-thermal Remote Sensing Data with Inputs from Geomorphometric Parameter[J]. Remote Sensing of Environment, 2010, 114(7):1378-1387
[7] Lippl S, Vijay S, Braun M. Automatic Delineation of Debris-covered Glaciers Using InSAR Coherence Derived from X-, C-and L-band Radar Data:a Case Study of Yazgyl Glacier[J]. Journal of Glaciology, 2018, 64(247):811-821
[8] Jiang Zongli, Ding Yongjian, Liu Shiyin, et al. A Study of the Debris-covered Glacier Limit Based on SAR[J]. Advances in Earth Science, 2012, 27(11):1245-1251(蒋宗立, 丁永建, 刘时银, 等. 基于SAR的表碛覆盖型冰川边界定位研究[J]. 地球科学进展, 2012, 27(11):1245-1251) [9] Bhambri R, Bolch T, Chaujar R K. Mapping of Debris-covered Glaciers in the Garhwal Himalayas Using ASTER DEMs and Thermal Data[J]. International Journal of Remote Sensing, 2011, 32(23):8095-8119
[10] Scherler D, Wulf H, Gorelick N. Global Assessment of Supraglacial Debris-cover Extents[J]. Geophysical Research Letters, 2018, 45(21):798-805
[11] Wu Miao, Han Yongshun, Zhang Dongshui, et al. Information Extraction Method of Debris-covered Glaciers in Bomi Count. Mountain Research, 2017, 35(2):238-245(吴淼, 韩用顺, 张东水, 等. 表碛覆盖冰川信息提取方法——以波密县为例.山地学报, 2017, 35(2):238-245) [12] Li Rongxing, Li Guojun, Feng Tiantian, et al. A Review of Antarctic Ice velocity Products and Methods Based on Optical Remote Sensing Satellite imagesa[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):953-963(李荣兴, 李国君, 冯甜甜, 等. 基于光学遥感卫星影像的南极冰流速产品和方法研究综述[J]. 测绘学报, 2022, 51(6):953-963) [13] Chen Jun, Ke Changqing. Research Progress on Ice Velocity of Antarctic Ice Sheet[J]. Journal of Polar Research, 2015, 27(1):115-124(陈军, 柯长青. 南极冰盖表面冰流速研究综述[J]. 极地研究, 2015, 27(1):115-124) [14] Xu Junli, Zhang Shiqiang, Han Haidong, et al. Change of the Surface Velocity of Koxkar Baxi Glacier Interpreted from Remote Sensing Data, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33(2):268-275(许君利, 张世强, 韩海东, 等. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析[J]. 冰川冻土, 2011, 33(2):268-275) [15] Altena B, Scambos T, Fahnestock M, et al. Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data[J]. The Cryosphere, 2019, 13(3):795-814.
[16] Das S, Sharma M C, Miles K E. Flow Velocities of the Debris-covered Miyar Glacier, Western Himalaya, India[J]. Geografiska Annaler:Series A, Physical Geography, 2022, 104(1):11-34
[17] Xiong Junlin, Fan Xuanmei, Dou Xiangyang, et al. Seasonal Variation of Yalong Glacier's Velocity in Ranwu Lake Basin, Southeast Tibetan Platea[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1579-1588(熊俊麟, 范宣梅, 窦向阳, 等. 藏东南然乌湖流域雅弄冰川流速季节性变化[J]. 武汉大学学报(信息科学版), 2021, 46(10):1579-1588) [18] Han Haidong, Liu Shiyin, Ding Yongjian, et al. Near-surface Meteorological Characteristics on the Koxkar Baxi Glacier, Tianshan[J]. Journal of Glaciology and Geocryology, 2008, 30(6):967-975(韩海东, 刘时银, 丁永建, 等. 科其喀尔巴西冰川的近地层基本气象特征[J]. 冰川冻土, 2008, 30(6):967-975) [19] Han H D, Wang J, Liu S Y. Backwasting Rate on Debris-covered Koxkar Glacier, Tuomuer Mountain, China[J]. Journal of Glaciology, 2010, 56(196):287-296
[20] Xu M, Han H D, Kang S C, et al. Characteristics of Climate and Melt Runoff in the Koxkar Glacier River Basin, South Slope of the Tianshan Mountains, Northwest China[J]. Sciences in Cold and Arid Regions, 2020, 11(6):435-447
[21] Chan J C-W, Paelinckx D. Evaluation of Random Forest and Adaboost Tree-based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery[J]. Remote Sensing of Environment, 2008, 112(6):2999-3011
[22] Feng Zhili, Xiao Feng, Lu Xiaoping, et al. Winter Wheat Classification Method Based on Feature Optimization of Random Forest[J]. Bulletin of Surveying and Mapping, 2022, 2022(3):70-75(冯志立, 肖锋, 卢小平, 等. 基于随机森林特征优选的冬小麦分类方法[J]. 测绘通报, 2022, 03:70-75) [23] Belgiu M, Dragut L. Random Forest in Remote Sensing:A Review of Applications and Future Directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31
[24] Genuer R, Poggi J M, Tuleau-Malot C. Variable Selection Using Random Forests[J]. Pattern Recognition Letters, 2010, 31(14):2225-2236
[25] Zheng X, He G, Wang S, et al. Comparison of Machine Learning Methods for Potential Active Landslide Hazards Identification with Multi-source Data[J]. ISPRS International Journal of Geo-Information, 2021, 10(4):253
[26] Wang Qun, Zhang Yunling, Fan Jinghun, et al. Monitoring the Motion of the Yiga Glacier Using GF-3 Images[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):460-466(王群, 张蕴灵, 范景辉, 等. 利用高分三号影像监测依嘎冰川表面运动[J]. 武汉大学学报(信息科学版), 2020, 45(3):460-466) [27] Lu Hongli, Han Haidong, Xu Junli, et al. Analysis of the Flow Features in the Ablation Zone of the Koxkar Glacier on South Slopes of the Tianshan Mountains[J]. Journal of Glaciology & Geocryology, 2014, 36(2):248-258(鲁红莉, 韩海东, 许君利, 等. 天山南坡科其喀尔冰川消融区运动特征分析[J]. 冰川冻土, 2014, 36(2):248-258) [28] Wu Z, Zhang H W, Liu S Y, et al. Influence of Debris Cover on Glacier Response to Climate Change:Insights from Koxkar Glacier Using Dynamic Simulation[J]. Arabian Journal of Geosciences, 2019, 12(506):1-11
[29] Zhou Zhongzheng, Xu Caijun, Liu Yang, et al. Extraction and Analysis of Temporal-Spatial Variation Characteristics of Surface Velocity of the Gangnalou Glacier[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2):226-233(周中正, 许才军, 刘洋, 等. 岗纳楼冰川表面流速时空变化特征提取及分析[J]. 武汉大学学报(信息科学版), 2022, 47(2):226-233) [30] Guan Weijin, Cao Bo, Pan Baotian. Research of Glacier Flow Velocity:Current Situation and Prospects[J]. Journal of Glaciology and Geocryology, 2020, 42(4):1101-1114(管伟瑾, 曹泊, 潘保田. 冰川运动速度研究:方法、变化、问题与展望[J].冰川冻土, 2020, 42(4):1101-1114) [31] Zhang Xiaobo, Zhao Xuesheng, Ge Daqing. Et al. Monitoring Displacement of Laohugou Glacier No.12 Based on Landsat 8 and TerraSAR-X Images[J]. Journal of Remote Sensing, 2018, 22(1):153-160(张晓博, 赵学胜, 葛大庆, 等. 利用Landsat 8和Terra SAR-X影像研究老虎沟12号冰川运动特征[J].遥感学报, 2018, 22(1):153-160) [32] Pieczonka T, Bolch T, Kröhnert M, et al. Glacier Branch Lines and Glacier Ice Thickness Estimation for Debris-covered Glaciers in The Central Tien Shan[J]. Journal of Glaciology, 2018, 64(247):835-849.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: