遥感影像场景识别的贝叶斯共轭批次归一化方法

虞欣, 郑肇葆, 孟令奎, 李林宜

虞欣, 郑肇葆, 孟令奎, 李林宜. 遥感影像场景识别的贝叶斯共轭批次归一化方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220632
引用本文: 虞欣, 郑肇葆, 孟令奎, 李林宜. 遥感影像场景识别的贝叶斯共轭批次归一化方法[J]. 武汉大学学报 ( 信息科学版). DOI: 10.13203/j.whugis20220632
YU Xin, ZHENG Zhaobao, MENG Lingkui, LI Linyi. Scene Recognition of Remotely Sensed Images Based on Bayes Adjoint Batch Normalization[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220632
Citation: YU Xin, ZHENG Zhaobao, MENG Lingkui, LI Linyi. Scene Recognition of Remotely Sensed Images Based on Bayes Adjoint Batch Normalization[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220632

遥感影像场景识别的贝叶斯共轭批次归一化方法

基金项目: 

国家重点研发计划课题(编号:2021YFB3900603)、北京市科技新星计划资助

详细信息
    作者简介:

    虞欣,教授,主要从事影像解译、人工智能和贝叶斯统计等研究。china_yuxin@163.com。

    通讯作者:

    李林宜,博士,副教授。lilinyi@whu.edu.cn。

Scene Recognition of Remotely Sensed Images Based on Bayes Adjoint Batch Normalization

  • 摘要: 归一化(Normalization)方法作为特征预处理的关键部分,在浅学习和深度学习中都是至关重要的。针对批次归一化方法中存在对批次样本容量依赖较大的问题,当前的优化思路主要是从样本信息的其它维度(比如:通道、层、时间等)来弥补批次样本容量较小的不足。本文从贝叶斯理论的角度出发,通过将总体信息、先验信息和样本信息科学、合理地融合方式,来弥补批次样本容量不足的缺陷,从而可以更加准确地估计样本均值和样本方差,使得归一化后的特征地落入最佳的非饱和区域,以便更好地反应整个特征空间的原始表征,进而深度学习模型可以达到最佳的特征表达能力。实验与分析表明:本文提出的贝叶斯共轭批次归一化方法(BABN)是可行、有效的,在NWPU-RESISC45数据集上,其分类精度比批次归一化方法(BN)要高5.64%。而且,得益于总体信息和先验信息的帮助,BABN受批次样本容量的影响较小。
    Abstract: Objective: Normalization methods plays an important role in feature preprocessing phase not only in conventional machine learning domain but also in contemporary deep learning domain. Batch Normalization (BN) is very successful, but its performance very depends on the sample size. Therefore, many researchers try to improve it when the sample size is inadequate through adding the sample size merely in the sample information space. Methods: This paper utilizes Bayes theory to integrate general information, prior information and sample information, to offset the inadequate sample information. In this way, it is able to estimate sample mean and sample variance more precisely and more robust especially when the sample size is small, and makes the normalized feature better fall into non- saturating region of activation function, which enables deep learning model to better describe original feature space. Results: The top-1 test classification accuracy in the dataset of NWPU-RESISC45 has been improved by 5.64% than BN. Moreover, with the help of general information and prior information, the proposed method(BABN) is not sensitive to the sample size. Conclusions: The experiment results show that the proposed method (Bayes Adjoint Batch Normalization, BABN) is feasible and effective, and the new method performs better in the remotely sensed image scene recognition than Batch Normalization (BN) method and other variants.
  • [1] . ZHANG Yongjun, WAN Yi, SHI Wenzhong, ZHANG Zuxun, LI Yansheng, JI Shunping, GUO Haoyu, LI Li. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083.(张永军, 万一, 史文中, 张祖勋, 李彦胜, 季顺平, 郭浩宇, 李礼. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083.)
    [2] . SHI Wenzhong, ZHANG Min. Artificial intelligence for reliable object recognition from remotely sensed data:overall framework design, review and prospect[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1049-1058.(史文中, 张敏. 人工智能用于遥感目标可靠性识别:总体框架设计、现状分析及展望[J]. 测绘学报, 2021, 50(8):1049-1058.)
    [3] . SHAO Zhenfeng, SUN Yueming, XI Jiangbo, LI Yan. Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2):234-241. doi:10.13203/j.whugis20200640.(邵振峰, 孙悦鸣, 席江波, 李岩. 智能优化学习的高空间分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(2):234-241. doi:10.13203/j.whugis20200640)
    [4] . GONG Jianya, ZHANG Zhan, JIA Haowei, ZHOU Huan, ZHAO Yuanxin, XIONG Hanjiang. Multi-source Data Ground Object Extraction Based on Knowledge-Aware and Multiscale Feature Fusion Network[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1546-1554. doi:10.13203/j.whugis20220580.(龚健雅, 张展, 贾浩巍, 周桓, 赵元昕, 熊汉江. 面向多源数据地物提取的遥感知识感知与多尺度特征融合网络[J]. 武汉大学学报(信息科学版), 2022, 47(10):1546-1554. doi:10.13203/j.whugis20220580)
    [5] . YU Xin, ZHENG Zhaobao, LI Linyi. Oblique Factor Model for Selecting Training Samples[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11):1870-1877. doi:10.13203/j.whugis20200631.(虞欣, 郑肇葆, 李林宜. 适用于训练样本选择的斜交因子模 型研 究[J]. 武汉 大学 学报(信息 科学 版), 2022, 47(11):1870-1877. doi:10.13203/j.whugis20200631)
    [6] . CHEN Lifu, LONG Fengqi, LI Zhenhong, YUAN Zhihui, ZHU Wu, CAI Xingmin. Multi-level Feature Attention Fusion Network for Water Extraction from Multi-source SAR Images[J]. Geomatics and Information Science of Wuhan University. doi:10.13203/j.whugis20230041. (陈立福, 龙凤琪, 李振洪, 袁志辉, 朱武, 蔡兴敏. 面向多源 SAR图像的多级特征注意力水体提取网络[J]. 武汉大学学报(信息科学版). doi:10.13203/j.whugis20230041)
    [7] . LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1176-1190. doi:10.13203/j.whugis20210652.(李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报(信息科学版), 2022, 47(8):1176-1190. doi:10.13203/j.whugis20210652)
    [8] . LIU Jianwei, ZHAO Huidan, LUO Xionglin, et al. Research progress on batch normalization of deep learning and its related algorithms. Acta Automatica Sinica, 2020, 46(6):1090-1120 doi:10.16383/j.aas.c180564.(刘建伟, 赵会丹, 罗雄麟,等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报, 2020, 46(6):31.)
    [9]

    . Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in neural information processing systems, 2012, 25(2).

    [10]

    . Carandini M, Heeger D J. Normalization as a canonical neural computation[J]. Nature Reviews Neuroscience, 2012, 13(1):51-62.

    [11]

    . Heeger D J. Normalization of cell responses in cat striate cortex[J]. Visual neuroscience, 1992, 9(2):181-197.

    [12]

    . Sergey Ioffe and Christian Szegedy. Batch normalization:Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, pages 448-456, 2015.

    [13]

    . Peng C, Xiao T, Li Z, et al. Megdet:A large mini-batch object detector[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018:6181-6189.

    [14]

    . Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), pages 3-19, 2018.

    [15]

    . K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification. In ICCV, 2015.

    [16]

    . Gong Cheng, Junwei Han, Xiaoqiang Lu. Remote Sensing Image Scene Classification:Benchmark and State of the Art. Proceedings of the IEEE, 105(10):1865-1883, 2017.

    [17]

    . Guangrun Wang, Ping Luo, Xinjiang Wang, Liang Lin, et al. Kalman normalization:Normalizing internal representations across network layers. In Advances in Neural Information Processing Systems, pages 21-31, 2018.

    [18]

    . Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016

    [19]

    . Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

    [20]

    . Shao W, Meng T, Li J, et al. Ssn:Learning sparse switchable normalization via sparsestmax[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:443-451.

    [21]

    . Li B, Wu F, Weinberger K Q, et al. Positional normalization[J]. Advances in Neural Information Processing Systems, 2019, 32.

    [22]

    . Yao Z, Cao Y, Zheng S, et al. Cross-Iteration Batch Normalization[J]. CVPR 2021.

    [23]

    . Singh S, Krishnan S. Filter Response Normalization Layer:Eliminating Batch Dependence in the Training of Deep Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.

    [24]

    . Sergey Ioffe. Batch renormalization:Towards reducing minibatch dependence in batchnormalized models. In Advances in Neural Information Processing Systems, pages 1945-1953, 2017

    [25]

    . Hyeonseob Nam and Hyo-Eun Kim. Batch-instance normalization for adaptively styleinvariant neural networks. In Advances in Neural Information Processing Systems, pages 2563-2572, 2018.

    [26]

    . Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization. arXiv preprint arXiv:1903.10520, 2019.

    [27]

    . S. Gross and M.Wilber. Training and investigating Residual Nets. https://github.com/facebook/fb.resnet.torch,2016.

    [28]

    . C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

    [29]

    . Xiao-Yun Zhou, Jiacheng Sun, Nanyang Ye, Xu Lan, Qijun Luo, Bo-Lin Lai, Pedro Esperanca, Guang-Zhong Yang, and Zhenguo Li. Batch group normalization. arXiv preprintarXiv:2012.02782, 2020.

    [30]

    . Huang L, Yang D, Lang B, et al. Decorrelated batch normalization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:791-800.

    [31]

    . De Vries H, Strub F, Mary J, et al. Modulating early visual processing by language[J]. Advances in Neural Information Processing Systems, 2017, 30.

    [32]

    . Singh S, Shrivastava A. Evalnorm:Estimating batch normalization statistics for evaluation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:3633-3641.

    [33]

    . Jia S, Chen D J, Chen H T. Instance-level meta normalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:4865-4873.

    [34]

    . Gülçehre Ç, Bengio Y. Knowledge matters:Importance of prior information for optimization[J]. The Journal of Machine Learning Research, 2016, 17(1):226-257.

    [35]

    . Arpit D, Zhou Y, Kota B, et al. Normalization propagation:A parametric technique for removing internal covariate shift in deep networks[C]//International Conference on Machine Learning. PMLR, 2016:1168-1176.

    [36]

    . Ren M, Liao R, Urtasun R, et al. Normalizing the normalizers:Comparing and extending network normalization schemes[J]. arXiv preprint arXiv:1611.04520, 2016.

    [37]

    . Gong X, Chen W, Chen T, et al. Sandwich Batch Normalization:A Drop-In Replacement for Feature Distribution Heterogeneity[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022:2494-2504.

    [38]

    . Miyato T, Kataoka T, Koyama M, et al. Spectral normalization for generative adversarial networks[J]. arXiv preprint arXiv:1802.05957, 2018.

    [39]

    . Liao Q, Kawaguchi K, Poggio T. Streaming normalization:Towards simpler and more biologically-plausible normalizations for online and recurrent learning[J]. arXiv preprint arXiv:1610.06160, 2016.

    [40]

    . Luo P, Peng Z, Ren J, et al. Do normalization layers in a deep ConvNet really need to be distinct?[J]. arXiv preprint arXiv:1811.07727, 2018.

    [41]

    . Salimans T, Kingma D P. Weight normalization:A simple reparameterization to accelerate training of deep neural networks[J]. Advances in neural information processing systems, 2016, 29.

    [42] . China Statistics Press. 2012.9(峁诗松著. 贝叶斯统计(第2版). 中国统计出版社. 2012.9)

    . Shisong Mao. Bayesian Statistics (second edition)

    [43] . FENG Quanlong, CHEN Boan, LI Guoqing, YAO Xiaochuang, GAO Bingbo and ZHANG Lianchong. 2022. A review for sample datasets of remote sensing imagery. National Remote Sensing Bulletin, 26(4):589-605.(冯权泷,陈泊安,李国庆,姚晓闯,高秉博,张连翀. 遥感影像样本数据集研究综述[J]. 遥感学报,2022,26(04):589-605.)
    [44] . GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022.(龚健雅, 许越, 胡翔云, 姜良存, 张觅. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8):1013-1022.)
    [45] . ZHONG Shouyi,XIAO Qing,WEN Jianguang,ZHENG Xingming,MA Mingguo,QU Yonghua,ZHENG Ke,CHI Tianhe,TANG Yong,YOU Dongqin,et al. 2020. Design and realization of ground object background spectral library for surveying and mapping. Journal of Remote Sensing(Chinese), 24(6):701-716.(钟守熠,肖青,闻建光,郑兴明,马明国,屈永华,郑柯,池天河,唐勇,游冬琴,郝大磊,程娟,贺敏,姜涛,晋锐,姚晓婧,赵理君.2020.测绘地物波谱本底数据库.遥感学报,24(6):701-716.)
    [46]

    . Xia G S, Hu J W, Hu F, Shi B G, Bai X, Zhong Y F, Zhang L P and Lu X Q. 2017. AID:a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7):3965-3981[DOI: 10.1109/tgrs.2017.2685945]

    [47]

    . Helber P, Bischke B, Dengel A and Borth D. 2019. EuroSAT:a novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7):2217-2226[DOI: 10.1109/jstars.2019.2918242]

    [48]

    . Basu S, Ganguly S, Mukhopadhyay S, DiBiano R, Karki M and Nemani R. 2015. DeepSat:a learning framework for satellite imagery//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, Washington:ACM[DOI: 10.1145/2820783.2820816]

    [49]

    . J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet:A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009

    [50] . TAO Chao, YIN Ziwei, ZHU Qing, LI Haifeng. Remote sensing image intelligent interpretation:from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1122-1134.(陶超, 阴紫薇, 朱庆, 李海峰. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8):1122-1134.)
  • 期刊类型引用(14)

    1. 刘学习,朱守庆,陈国,张克非,郑南山,刘婧璇. 基于全球统一坐标框架的GNSS精密轨道与钟差产品一致性分析. 测绘学报. 2025(03): 432-447 . 百度学术
    2. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 . 百度学术
    3. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 . 百度学术
    4. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 . 百度学术
    5. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 . 百度学术
    6. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 . 百度学术
    7. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 . 百度学术
    8. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 . 百度学术
    9. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 . 百度学术
    10. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 . 百度学术
    11. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 . 百度学术
    12. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 . 百度学术
    13. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 . 百度学术
    14. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  319
  • HTML全文浏览量:  23
  • PDF下载量:  15
  • 被引次数: 24
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-07-02

目录

    /

    返回文章
    返回