Correction of seawater surface sunglint reflection from HY-1C/D CZI images
-
摘要: 耀光反射是海洋光学遥感数据中难以忽略的现象,其差异有助于海洋环境问题的监测,同时也给水色信息的反演带来影响,准确计算或评估耀光反射信号是海洋遥感的一个研究热点。适用于粗空间分辨率数据的耀光统计模型,因尺度效应等影响,难以适用于高空间分辨率数据。发展基于近红外-短波红外水体吸收特征的谱间关系法,是实现高空间分辨率海洋光学数据太阳耀光反射校正的有效途径。本文以空间分辨率为50米的海洋一号C/D卫星(Haiyang-1C/D,HY-1C/D)海岸带成像仪(Coastal Zone Imager,CZI)数据为研究对象,基于耀光反射的光学过程和海洋目标的图像特征,详细分析了高空间分辨率海洋光学数据中耀光反射的图像特征与遥感尺度效应,发展了CZI数据可见光波段耀光反射校正的方法。研究结果表明耀光校正后,CZI数据中涡旋、水团等水色信息得以凸显; CZI数据Rrc反射率在460 nm,560 nm以及650 nm不确定性分别降低了65%,80%,89%。该方法不依赖于大气参数,有助于利用CZI数据快速开展近海水色的动态监测和反演。Abstract: Sunglint reflection is a phenomenon that is hard to ignore in marine optical remote sensing. Its difference helps the monitoring of marine environmental problems but brings influence to the inversion of ocean color information. Accurate calculation or evaluation of sunglint reflection signal is a research hotspot in marine remote sensing. The sunglint statistical model suitable for coarse spatial resolution data is difficult to be applied to high spatial resolution data due to the influence of the remote sensing scale effect. In this case, an effective remedy lies in developing a method with the spectral relationship based on the water absorption characteristics of near-infrared or short-wave infrared band. In this study, taking the Coastal Zone Imager (CZI) data of Haiyang-1 C/D (HY-1C/D) satellite with a spatial resolution of 50 m as the research object, based on the optical process of sunglint reflection and the image features of ocean targets, the image features and remote sensing scale effect of sunglint reflection in high spatial resolution images were analyzed in detail. As a result, the sunglint reflection correction method of CZI images in visible band was developed. It is suggested that ocean color information such as eddy and water mass are prominent in CZI images after sunglint correction; and the uncertainty of the Rrc reflectance at 460 nm, 560 nm, and 650 nm is reduced by 65%, 80%, and 89%, respectively. Furthermore, the method does not depend on the atmospheric parameters, which is helpful to realize the dynamic monitoring and inversion of offshore ocean color quickly.
-
Keywords:
- sunglint reflection /
- HY-1C/D /
- CZI /
- sunglint correction /
- high spatial resolution
-
-
[1] Kay S, Hedley J D, Lavender S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes:A Review of Methods for Visible and Near-Infrared Wavelengths[J]. Remote Sensing, 2009, 1(4):697- 730.
[2] Lu Y, Sun S, Zhang M, et al. Refinement of the Critical Angle Calculation for the Contrast Reversal of Oil Slicks Under Sunglint[J]. Journal of Geophysical Research:Oceans, 2016, 121(1):148-161.
[3] Hu C, Li X, Pichel W G, et al. Detection of Natural Oil Slicks in the NW Gulf of Mexico Using MODIS Imagery[J]. Geophysical Research Letters, 2009, 36(1):L01604.
[4] Jackson C. Internal Wave Detection Using the Moderate Resolution Imaging Spectroradiometer (MODIS)[J]. Journal of Geophysical Research:Oceans, 2007, 112(C11):C11012.
[5] Kay S, Hedley J, Lavender S. Sun Glint Estimation in Marine Satellite Images:A Comparison of Results from Calculation and Radiative Transfer Modeling[J]. Applied Optics, 2013, 52(23):5631.
[6] Steinmetz F, Deschamps P Y, Ramon D. Atmospheric Correction in Presence of Sun Glint:Application to MERIS[J]. Optics express, 2011, 19(10):9783-9800.
[7] Jackson C R, Alpers W. The Role of the Critical Angle in Brightness Reversals on Sunglint Images of the Sea Surface[J]. Journal of Geophysical Research:Oceans, 2010, 115(C9):C09019.
[8] Zhang H, Wang M. Evaluation of Sun Glint Models Using MODIS Measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(3):492-506.
[9] Cox C, Munk W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun's Glitter[J]. Journal of the Optical Society of America, 1954, 44(11):838.
[10] Zhang H, Yang K, Lou X, et al. Observation of Sea Surface Roughness at A Pixel Scale Using Multi-angle Sun Glitter Images Acquired by the ASTER Sensor[J]. Remote Sensing of Environment, 2018, 208:97-108.
[11] Kudryavtsev V, Yurovskaya M, Chapron B, et al. Sun Glitter Imagery of Ocean Surface Waves. Part 1:Directional Spectrum Retrieval and Validation[J]. Journal of Geophysical Research:Oceans, 2017, 122(2):1369-1383.
[12] Kudryavtsev V, Yurovskaya M, Chapron B, et al. Sun Glitter Imagery of Surface Waves. Part 2:Waves Transformation on Ocean Currents[J]. Journal of Geophysical Research:Oceans, 2017, 122(2):1384-1399.
[13] Harmel T, Chami M. Estimation of the Sunglint Radiance Field from Optical Satellite Imagery over Open Ocean:Multidirectional Approach and Polarization Aspects[J]. Journal of Geophysical Research:Oceans, 2013, 118(1):76-90.
[14] Wu X, Lu Y, Jiao J, et al. Using Sea Wave Simulations to Interpret the Sunglint Reflection Variation with Different Spatial Resolutions[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-4.
[15] Hochberg E J, Andréfouët S, Tyler M R. Sea Surface Correction of High Spatial Resolution Ikonos Images to Improve Bottom Mapping in Near-shore Environments[J]. IEEE Transactions on Goscience and Remote Sensing, 2003, 41(7):1724-1729.
[16] Hedley J D, Harborne A R, Mumby P J. Simple and Robust Removal of Sun Glint for Mapping Shallow-water Benthos[J]. International Journal of Remote Sensing, 2005, 26(10):2107-2112.
[17] Lyzenga D R, Malinas N P, Tanis F J. Multispectral Bathymetry Using A Simple Physically Based Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2251-2259.
[18] Joyce K E. A Method for Mapping Live Coral Cover Using Remote Sensing[J]. 2005.
[19] Zorrilla N A, Vantrepotte V, Ngoc D D, et al. Automated SWIR Based Empirical Sun Glint Correction of Landsat 8-OLI Data Over Coastal Turbid Water[J]. Optics Express, 2019, 27(8):A294.
[20] Harmel T, Chami M, Tormos T, et al. Sunglint Correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 Imagery over Inland and Sea Waters from SWIR Bands[J]. Remote Sensing of Environment, 2018, 204:308- 321.
[21] Ji H, Tian L, Li J, et al. Spatial-spectral Fusion of HY-1C COCTS/CZI Data for Coastal Water Remote Sensing Using Deep Belief Network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:1693-1704.
[22] LIU Jinchao,LIU Jianqiang,DING Jing,et al. A Refined Imagery Algorithm to Extract Green Tide in the Yellow Sea from HY-1C Satellite CZI Measurements[J]. Haiyang Xuebao. 2022, 44(5):1-11. (刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5):1-11.) [23] Feng L, Hu C. Comparison of Valid Ocean Observations Between MODIS Terra and Aqua over the Global Oceans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(3):1575-1585.
[24] Vanhellemont Q, Ruddick K. Acolite for Sentinel-2:Aquatic Applications of MSI Imagery[C]. Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic. 2016:9-13.
[25] ZHAO Bi, DING Jing, LIU Jianqiang, et al. Estimation of Oceanic Whitecaps Using High Spatial-Resolution Optical Remote Sensing. National Remote Sensing Bulletin, DOI:10.11834/jrs.20222106. (赵碧,丁静,刘建强等.海洋白帽的高空间分辨率光学遥感估算分析.遥感学报, DOI:10.11834/jrs.20222106.) [26] Gagliardini D A, Colón P C. Ocean Feature Detection Using Microwave Backscatter and Sun Glint Observations[J]. Gayana (Concepción), 2004, 68(2):180-185.
[27] Zilman G, Zapolski A, Marom M. On Detectability of a Ship's Kelvin Wake in Simulated SAR Images of Rough Sea Surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):609-619.
[28] Remote Sensing Image Analysis:Including the Spatial Domain[M]. Springer Science & Business Media, 2007.
[29] Kutser T, Vahtmäe E, Praks J. A Sun Glint Correction Method for Hyperspectral Imagery Containing Areas with Non-Negligible Water Leaving NIR Signal[J]. Remote Sensing of Environment, 2009, 113(10):2267-2274.
计量
- 文章访问数: 422
- HTML全文浏览量: 38
- PDF下载量: 49