Co-seismic Deformation Analysis of Qinghai Maduo Ms7.4 Earthquake Based on Optical Remote Sensing and SAR Images
-
摘要: 2021年5月22日青海省果洛藏族自治州玛多县发生Ms7.4级地震,作为近年来少有的发生在巴颜喀拉块体内部的强震,研究其同震形变场特征是十分必要的。本文收集了玛多地震前后Sentinel-2和Landsat8影像,利用光学像素偏移量跟踪技术获得了该地震东西向和南北向形变;基于地震前后Sentinel-1升降轨影像,利用InSAR(Interferometric Synthetic Aperture Radar)技术获取了该地震升降轨雷达视线向(Line of Sight,LOS)形变,利用SAR像素偏移量跟踪技术获得该地震距离向和方位向形变,联合解算得到其三维同震形变场,最后对提取的同震形变场结果进行对比交叉验证。结果表明:此次玛多地震为左旋走滑型地震,同震形变以东西向水平运动为主,发震断裂为江错断裂。基于光学遥感影像,得到该地震东西向和南北向形变大约集中在-1.60m~1.60m和-0.60m~0.60m;基于SAR影像,得到升轨最大LOS向抬升和沉降量约为1.29m和-1.12m,降轨最大LOS向抬升和沉降量约为1.15m和-1.26m;解算的三维同震形变场中,东西向形变约为-2.00m~1.70m,南北向形变主要集中-1.00m~0.50m,垂直向上沿断裂带两侧呈升降交替运动,形变约在-0.30m~0.30m之间。地震北侧形变量级相较于南侧更大,得到的地表破裂带长约176km,在东南末端(34.48° N,99.04° E)和西北末端(34.76°N,97.61° E),以及西段鄂陵湖南侧(34.74° N,97.75° E)存在分支破裂。基于光学遥感和SAR影像提取的玛多地震同震形变场具有一致特征,且多平台、多技术为获取该地震完整同震形变场补充了更多地表破裂带分支等特征,该研究为光学遥感和SAR影像在地震同震形变监测中的应用提供一些参考。Abstract: objectives: The Ms7.4 earthquake occurred in Maduo, Qinghai Province on May 22, 2021, which is a rare powerful earthquake that occurred in Bayan Har block in recent years, it is essential to study the characteristics of its co-seismic deformation field. Method: Based on sentinel-2 and Landsat8 images before and after Maduo earthquake, East-West and South-North two-dimensional co-seismic deformation fields were obtained by optical Pixel Offset Tracking. InSAR was utilized to obtain LOS co-seismic deformation based on Sentinel-1 ascending and descending images, and SAR Pixel Offset Tracking was utilized to obtain range and azimuth directions co-seismic deformation of the earthquake, meanwhile, 3D co-seismic deformation field of this earthquake is calculated, moreover, the results of co-seismic deformation field extracted are compared and verified. Results: The experimental results show that: co-seismic deformation field characteristics of Maduo earthquake based on optical and SAR images are great consistent. Maduo earthquake is a typical left-lateral strike-slip event, the co-seismic deformation is dominated by East-West horizontal movements, and the seismogenic fault is Jiangcuo fault. Based on optical images, it is obtained that East-West and North-South deformation of the earthquake are about ±1.60m and ±0.60m. Based on SAR images, the maximum LOS uplift and subsidence of ascending are about 1.29m and -1.12m, and descending are about 1.15m and -1.26m. In the 3D co-seismic deformation field, the East-West deformation is about -2.00m to 1.70m, North-South deformation is mainly concentrated in -1.00m to 0.50m, and it moves alternately up and down along both sides of the fault zone in Vertical direction, the deformation is about ±0.3m. The magnitude of deformation values on north side of the earthquake is larger than that on south side. Branch ruptures are shown at the end of the Southeast(34.48° N, 99.04° E) and Northwest(34.76° N, 97.61° E) of the surface rupture, and South side of Eling Lake (34.74° N, 97.75° E), and aftershock sequence is distributed near these branch ruptures. Conclusion: InSAR and Pixel Offset Tracking technology complement each other, which provides an effective way to obtain the complete co-seismic deformation field, and multi-platform, high-resolution optical and SAR images provide important datasets.
-
Keywords:
- Maduo Earthquake /
- Optical Remote Sensing Image /
- SAR Image /
- Pixel Offset Tracking /
- InSAR
-
-
[1] Zhang J, Zhu W, Cheng Y, et al. Landslide Detection in the Linzhi-Ya'an Section along the Sichuan-Tibet Railway Based on InSAR and Hot Spot Analysis Methods[J]. Remote Sensing, 2021, 13(18):3566
[2] Massonnet D, Feigl K L. Radar Interferometry and its Application to Changes in the Earth's Surface[J]. Reviews of Geophysics, 1998, 36(4):441-500
[3] Michel R, Avouac J-P, Taboury J. Measuring Ground Displacements from SAR Amplitude Images:Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878
[4] Elliott J L, Freymueller J T, Rabus B. Coseismic Deformation of the 2002 Denali Fault Earthquake:Contributions from Synthetic Aperture Radar Range Offsets[J]. Journal of Geophysical Research, 2007, 112(B6):B06421
[5] Fialko Y, Sandwell D, Simons M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435(7040):295-299
[6] Michel R, Avouac J-P. Deformation due to the 17 August 1999 Izmit, Turkey, Earthquake Measured from SPOT Images:IZMIT EARTHQUAKE MEASURED FROM SPOT IMAGES[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):ETG 2-1-ETG 2-6
[7] Ajorlou N, Hollingsworth J, Mousavi Z, et al. Characterizing Near-Field Surface Deformation in the 1990 Rudbar Earthquake (Iran) Using Optical Image Correlation[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(6)
[8] Wang Leyang, Zou Ajian. Retrieving 3-D Coseismic Deformation of the 2016 Mw7.8 Kaikoura Earthquake Using SAR and Optical Data[J]. Geomatics and Information Science of Wuhan University, 2022:1-14(王乐洋, 邹阿健. 结合SAR和光学数据检索凯库拉Mw7.8地震三维形变[J]. 武汉大学学报(信息科学版), 2022:1-14) [9] Zhang C, Li Z, Yu C, et al. An Integrated Framework for Wide-Area Active Landslide Detection with InSAR Observations and SAR Pixel Offsets[J]. Landslides, 2022
[10] Yao J, Yao X, Wu Z, et al. Research on Surface Deformation of Ordos Coal Mining Area by Integrating Multitemporal D-InSAR and Offset Tracking Technology[J]. Journal of Sensors, 2021, 2021(4):1-14
[11] Yu Pengfei, Xiong Wei, Chen Wei, et al. Slip Model of the 2021 M7.4 Madoi Earthquake Constrained by GNSS and InSAR Coseismic Delormation[J]. Chinese Journal of Geophysics, 2022, 65(2):509-522,(余鹏飞, 熊维, 陈威, 等. 基于GNSS和InSAR约束的2021年玛多Ms7.4地震同震滑动分布及应用[J]. 地球物理学报, 2022, 65(2):509-522) [12] Liu Jihong, Hu Jun, Li hiwei, et al. Complete Three-Dimensional Coseismic Displacements due to the 2021 Maduo Earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR Images[J]. Science China Earth Sciences, 2022, 52(5):882-892(刘计洪, 胡俊, 李志伟, 等. 融合哨兵1 号和ALOS-2数据的2021年青海玛多地震高精度三维同震形变场研究[J]. 中国科学:地球科学, 2022, 52(5):882-892) [13] Li Haibing, Pan liawei, Sun Zhiming, et al. Continental Tectonic Deformation and Seismic Activity:A Case Study from the Tibetan Plateau[J]. Acta Geologica Sinica, 2021, 95(1):194-213(李海兵, 潘家伟, 孙知明, 等. 大陆构造变形与地震活动——以青藏高原为例[J]. 地质学报, 2021, 95(1):194-213) [14] Deng Qidong,Cheng Shaoping,Ma Ji, et al. Seismic Activities and Earthquake Potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2014, 57(7):2025-2042(邓起东, 程绍平, 马冀, 等. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 2014, 57(7):2025-2042) [15] Jia Shixu, Lin Jiyan, Guo Wenbin, et al. Investigation on Diversity of Crustal Structures Beneath the Bayan Har Block[J]. Chinese Journal of Geophysics, 2017, 60(6):2226-2238(嘉世旭, 林吉焱, 郭文斌,等. 巴颜喀拉块体地壳结构多样性探测[J]. 地球物理学报, 2017, 60(6):2226-2238) [16] Gao Xiang, Deng Qidong. Activity Analysis of Large Earthquakes in Boundary Faults around the Bayankala Faulting Block[J]. Acta Geologica Sinica, 2013, 87(1):9-19(高翔, 邓起东. 巴颜喀喇断块边界断裂强震活动分析[J]. 地质学报, 2013, 87(1):9-19) [17] Robinson D P, Brough C, Das S. The Mw7.8, 2001 Kunlunshan Earthquake:Extreme Rupture Speed Variability and Effect of Fault Geometry[J]. Journal of Geophysical Research, 2006, 111(B8):B08303
[18] Li Z, Elliott J R, Feng W, et al. The 2010 MW 6.8 Yushu (Qinghai, China) Earthquake:Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research, 2011, 116(B10):B10302
[19] Feng G, Hetland E A, Ding X, et al. Coseismic Fault Slip of the 2008 Mw7.9 Wenchuan Earthquake Estimated from InSAR and GPS Measurements[J]. Geophysical Research Letters, 2010, 37(1)
[20] Huang Y, Qiao X, Freymueller J T, et al. Fault Geometry and Slip Distribution of the 2013 Mw6.6 Lushan Earthquake in China Constrained by GPS, InSAR, Leveling, and Strong Motion Data[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(7):7341-7353
[21] Zhao D, Qu C, Shan X, et al. InSAR and GPS Derived Coseismic Deformation and Fault Model of the 2017 Ms7.0 Jiuzhaigou Earthquake in the Northeast Bayanhar Block[J]. Tectonophysics, 2018, 726:86-99
[22] Li Zhicai, Ding Kaihua, Zhang Peng, et al. Co-seismic Deformation and Slip Distribution Of 2021 Mw7.4 Madoi Earthquake from GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1489-1497(李志才, 丁开华, 张鹏, 等. GNSS观测的2021年青海玛多地震(Mw 7.4)同震形变及其滑动分布[J]. 武汉大学学报(信息科学版), 2021, 46(10):1489-1497) [23] Pan Jiawei, Bai Mingkun, Li Chao, et al. Coseismic Surface Rupture and Seismogenic Structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 Earthquake[J]. Acta Geologica Sinica, 2021, 95(6):1655-1670(潘家伟, 白明坤, 李超, 等. 2021年 5月 22日青海玛多Ms7.4地震地表破裂带及发震构造[J]. 地质学报, 2021, 95(6):1655-1670) [24] Wang Weilai, Fang Lihua, Wu Jianping, et al. Aftershock Sequence Relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China[J]. Science China Earth Sciences, 2021, 51(7):1193-1202(王未来, 房立华, 吴建平, 等. 2021年青海玛多Ms7.4地震序列精定位研究[J]. 中国科学:地球科学, 2021, 51(7):1193-1202) [25] He Lijia, Feng Guangcai, Feng Zhixiong, et al. Coseismic Displacements of 2016 Mw7.8 Kaikoura, New Zealand Earthquake, Using Sentinel-2 Optical Images[J]. Acta Geodaetica Et Cartographica Sinic, 2019, 48(3):339-351(贺礼家, 冯光财, 冯志雄, 等. 哨兵-2号光学影像地表形变监测:以2016年 Mw7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3):339-351) [26] Leprince S, Barbot S, Ayoub F, et al. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6):1529-1558
[27] Yang W, Wang Y, Wang Y, et al. Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images[J]. Landslides, 2020, 17(3):659-668
[28] Liu Lin, Song Haofeng, Du Yanan, et al. Time-Series Offset Tracking of the Baige Landslide Based on Sentinel-2 and Landsat 8[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1461-1470(柳林, 宋豪峰, 杜亚男, 等. 联合哨兵2 号和Landsat 8估计白格滑坡时序偏移量[J]. 武汉大学学报(信息科学版), 2021, 46(10):1461-1470) [29] Feng G, Ding X, Li Z, et al. Calibration of an InSAR-Derived Coseimic Deformation Map Associated With the 2011 Mw-9.0 Tohoku-Oki Earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):302-306
[30] Michel R, Avouac J-P. Coseismic Surface Deformation from Air Photos:The Kickapoo Step over in the 1992 Landers Rupture:AIRBORNE IMAGERY OF COSEISMIC RUPTURE[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B3):n/a-n/a
[31] Scherler D, Leprince S, Strecker M R. Glacier-Surface Velocities in Alpine Terrain from Optical Satellite Imagery-Accuracy Improvement and Quality Assessment[J]. Remote Sensing of Environment, 2008, 112(10):3806-3819
[32] Ding C, Feng G, Li Z, et al. Spatio-Temporal Error Sources Analysis and Accuracy Improvement in Landsat 8 Image Ground Displacement Measurements[J]. Remote Sensing, 2016, 8(11):937
[33] Wegmüller U, Werner C. Gamma SAR Processor and Interferometry Software[J]. ESA SP (Print), 1997:1687-1692
[34] Scheiber R, Moreira A. Coregistration of Interferometric SAR Images Using Spectral Diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2179-2191
[35] Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21):4035-4038
[36] Pepe A, Lanari R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2374-2383
[37] Yu C, Penna N T, Li Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025
[38] Yu C, Li Z, Penna N T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model[J]. Remote Sensing of Environment, 2018, 204:109-121
[39] Strozzi T, Luckman A, Murray T, et al. Glacier Motion Estimation Using SAR Offset-Tracking Procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391
[40] Wegnüller U, Werner C, Strozzi T, et al. Sentinel-1 Support in the GAMMA Software[J]. Procedia Computer Science, 2016, 100:1305-1312
[41] Zhang Chenglong, Li Zhenhong, Zhang Shuangcheng, et al. Surface Ruptures of the 2022 Mw6.7 Menyuan Earthquake Revealed by Integrated Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1257-1270(张成龙, 李振洪, 张双成, 等. 综合遥感解译2022年 Mw6.7青海门源地震地表破裂带[J]. 武汉大学学报(信息科学版), 2022, 47(8):1257-1270) [42] Werner C, Wegmuller U, Strozzi T, et al. Precision Estimation of Local Offsets between Pairs of SAR SLCs and Detected SAR Images[C]//Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05.. Seoul, Korea:IEEE,2005:4803-4805
[43] Huang L, Li Z. Comparison of SAR and Optical Data in Deriving Glacier Velocity with Feature Tracking[J]. International Journal of Remote Sensing, 2011, 32(10):2681-2698
[44] Yan S, Guo H, Liu G, et al. Mountain Glacier Displacement Estimation Using a DEM-Assisted Offset Tracking Method with ALOS/PALSAR Data[J]. Remote Sensing Letters, 2013, 4(5):494-503
[45] Zhang W, Zhu W, Tian X, et al. Improved DEM Reconstruction Method Based on Multibaseline InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5
[46] Konca A O, Leprince S, Avouac J-P, et al. Rupture Process of the 1999 Mw 7.1 Duzce Earthquake from Joint Analysis of SPOT, GPS, InSAR, Strong-Motion, and Teleseismic Data:A Supershear Rupture with Variable Rupture Velocity[J]. Bulletin of the Seismological Society of America, 2010, 100(1):267-288
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: