POI和夜间灯光融合数据用于城乡结合部空间划定的研究——以武汉市为例

孟滢滢, 周思赜, 聂艳, 曾怀文, 于婧

孟滢滢, 周思赜, 聂艳, 曾怀文, 于婧. POI和夜间灯光融合数据用于城乡结合部空间划定的研究——以武汉市为例[J]. 武汉大学学报 ( 信息科学版), 2025, 50(3): 449-461. DOI: 10.13203/j.whugis20220597
引用本文: 孟滢滢, 周思赜, 聂艳, 曾怀文, 于婧. POI和夜间灯光融合数据用于城乡结合部空间划定的研究——以武汉市为例[J]. 武汉大学学报 ( 信息科学版), 2025, 50(3): 449-461. DOI: 10.13203/j.whugis20220597
MENG Yingying, ZHOU Size, NIE Yan, ZENG Huaiwen, YU Jing. Spatial Delimitation of Urban-Rural Fringe Based on POI and Nighttime Light Data: A Case Study of Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 449-461. DOI: 10.13203/j.whugis20220597
Citation: MENG Yingying, ZHOU Size, NIE Yan, ZENG Huaiwen, YU Jing. Spatial Delimitation of Urban-Rural Fringe Based on POI and Nighttime Light Data: A Case Study of Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 449-461. DOI: 10.13203/j.whugis20220597

POI和夜间灯光融合数据用于城乡结合部空间划定的研究——以武汉市为例

基金项目: 

教育部人文社会科学研究青年基金 20YJC630207

详细信息
    作者简介:

    孟滢滢,硕士,研究方向为国土空间规划。623173312@qq.com

    通讯作者:

    于婧,博士,教授。yjing@hubu.edu.cn

Spatial Delimitation of Urban-Rural Fringe Based on POI and Nighttime Light Data: A Case Study of Wuhan City

  • 摘要:

    城乡结合部边界识别是城乡精细规划与治理的基础工作,对于土地可持续利用、城乡一体化等进程具有推动作用。以往城乡结合部划分存在数据源单一、获取困难、时空分辨率低的不足,基于电子地图的兴趣点(point of interest,POI)和国家极地轨道伙伴关系(national polar-orbiting partnership,NPP)卫星的夜间灯光融合数据,构建NPP &POI综合指数;结合城乡空间结构关系,提出了一种新的城乡结合部空间识别方法。以武汉市为例,采用断裂点分析法识别空间突变点,求得城乡结合部边界,利用土地利用结构信息熵、归一化植被指数(normalized difference vegetation index,NDVI)以及人口密度数据对划定结果进行验证和比较,并对典型区域进行了野外实地校核。结果表明,相较于单独采用POI、夜间灯光和人口密度数据,NPP &POI综合指数考虑了夜间灯光与POI中设施类型、光照强度和分辨率差异,其划分识别出的城乡结合部边界准确度更高、时效性更强;相较于土地利用、景观等数据,NPP &POI综合指数更能表征城乡发展活力,定量识别出城乡潜在中心区与多层结构对于城乡基础设施的配置、产业分工、生态职能划分等研究具有参考意义。NPP &POI综合指数在城乡空间上的二次突变规律证实了城乡结合部作为城市扩张过程中产生的地域实体客观存在,为城乡三元结构理论提供了实证支撑。

    Abstract:
    Objectives 

    The identification of urban-rural fringe boundaries is a fundamental task for fine urban and rural planning and governance, and it plays a vital role in promoting sustainable land use and urban-rural integration. The traditional methods for delineating urban-rural boundaries have many limitations, such as reliance on single data sources, difficulty in data acquisition, and low temporal and spatial resolution.

    Methods 

    This paper proposes a novel method for identifying urban-rural fringe boundaries, based on the fusion of points of interest (POI) from electronic map and nighttime light data of national polar-orbiting partnership (NPP) satellite, in conjunction with the spatial structure of urban and rural space. Taking Wuhan City as a case study, this paper employs break point analysis to identify spatial mutation points and determine urban-rural fringe boundaries. The results are validated and compared using land use structure entropy, normalized difference vegetation index, and population density data, with field verification conducted in selected typical areas.

    Results 

    The results show that by considering differences in facility types, light intensity, and resolution in POI and nighttime light data, the NPP &POI composite index for boundary delineation offers higher accuracy and timeliness compared to the boundaries identified using POI, nighttime light, and population density data individually. NPP &POI data can more effectively reflect the vitality of urban-rural development compared to land use and landscape data. The quantitative identification of potential central areas and multi-layered structures in urban-rural settings is significant for research on urban-rural infrastructure allocation, industrial division, and ecological function distribution.

    Conclusions 

    The secondary mutation pattern of NPP &POI data in urban-rural spaces confirms the objective existence of urban-rural fringe areas as territorial entities emerging from urban expansion, providing empirical support for the urban-rural triad structure theory.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220597
  • 图  1   不同带宽下武汉市NPP &POI处理效果对比

    Figure  1.   Comparison of NPP &POI Processing Effects Under Different Search Distances in Wuhan City

    图  2   NPP &POI剖面线与等值线示意图

    Figure  2.   Schematic Diagram of NPP &POI Section Lines and Isolines

    图  3   NPP &POI及其等值面面积随距离变化图

    Figure  3.   Variation of NPP &POI and the Isosurface Area with Distance

    图  4   武汉市城乡结合部边界

    Figure  4.   Urban-Rural Fringe Boundary of Wuhan City

    图  5   选定剖面线处遥感影像

    Figure  5.   Remote Sensing Images at Section Lines

    图  6   武汉市城乡结合部土地利用类型分布图

    Figure  6.   Distribution Map of Land Use Types in Urban Rural Fringe of Wuhan City

    图  7   武汉市城乡结合部空间形态

    Figure  7.   Spatial Form in Urban-Rural Fringe of Wuhan City

    图  8   验证格网及其测算值

    Figure  8.   Verification Grid and Its Measured Value

    图  9   验证样带指标测算值

    Figure  9.   Verification of the Transect Index Measurements

    图  10   验证单元影像示例

    Figure  10.   Examples of Validation Cell Images

    图  11   武汉市城乡结合部边界与人口密度分布图

    Figure  11.   Distribution Map of Boundary and Population Density in the Urban Rural Area of Wuhan City

    图  12   实地考察点位分布图

    Figure  12.   Distribution Map of Site Investigation Points

    表  1   武汉市POI分类统计

    Table  1   Statistics of POI Classification in Wuhan City

    功能类别一级行业分类数量/条
    文体类旅游景点、休闲娱乐、运动健身、教育培训、文化传媒、自然地物53 966
    商业类美食、酒店、购物、生活服务、丽人、汽车服务、金融68 508
    产业类公司企业70 204
    公服类医疗、交通设施、政府机构33 640
    居住类房地产119 543
    下载: 导出CSV

    表  2   不同剖面线上NPP &POI断裂点数值统计表

    Table  2   Statistics of NPP &POI Breakpoint Values on Different Profile Lines

    剖面线序号NPP &POI综合指数断裂点平均值
    1~300.109
    31~600.095
    61~900.105
    91~1200.103
    121~1500.097
    151~1800.114
    下载: 导出CSV

    表  3   2010-2020年武汉市不同区域的NDVI分布情况

    Table  3   Distribution of NDVI in Different Areas of Wuhan City from 2010 to 2020

    年份城市核心区城乡结合部乡村
    平均值标准差平均值标准差平均值标准差
    20100.4120.1220.5570.1750.7080.120
    20110.4180.1020.5760.1760.7210.124
    20120.4070.1130.5410.1900.7100.145
    20130.4100.1100.5350.1960.6910.151
    20140.3930.1100.5360.1870.7130.147
    20150.3940.1030.5470.1930.7100.155
    20160.3830.1030.5150.1890.6920.153
    20170.3860.1000.5410.1880.7190.148
    20180.4040.0930.5380.1830.7250.136
    20190.4100.0940.5010.1830.6940.144
    20200.4310.1010.5230.1840.7180.158
    总变化量0.019-0.021-0.0340.0090.0100.038
    下载: 导出CSV
  • [1] 陈宏胜, 李志刚, 王兴平. 中央—地方视角下中国城乡二元结构的建构: “一五计划” 到“十二五规划” 中国城乡演变分析[J]. 国际城市规划, 2016, 31(6): 62-67.

    CHEN Hongsheng, LI Zhigang, WANG Xingping. The Construction of Urban-Rural Dual Structure from a Central-Local Government Perspective: Study on the Evolution of Urban and Rural China from the First Five-Year Plan to the Twelfth Five-Year Plan[J]. Urban Planning International, 2016, 31(6): 62-67.

    [2] 刘玉, 冯健. 城乡结合部农业地域功能实现程度及变化趋势: 以北京为例[J]. 地理研究, 2017, 36(4): 673-683.

    LIU Yu, FENG Jian. Analysis on Execution and Change of Regional Function of Agriculture in Rural-Urban Fringe: A Case Study of Beijing[J]. Geographical Research, 2017, 36(4): 673-683.

    [3]

    ZHONG S J, WANG M S, ZHU Y, et al. Urban Expansion and the Urban–Rural Income Gap: Empirical Evidence from China[J]. Cities, 2022, 129: 103831.

    [4]

    BRYANT C, RUSSWURM L H. The Impact of Non-Farm Development on Agriculture: A Synthesis[J]. Plan Canada, 1979, 19(2): 122-139.

    [5]

    GU C L, CHEN T, DING J H, et al. The Study of the Urban Fringes in Chinese Megalopolises[J]. Acta Geographica Sinica, 1993, 48(4): 317-328.

    [6]

    SHARP J S, CLARK J K. Between the Country and the Concrete: Rediscovering the Rural-Urban Fringe[J]. City & Community, 2008, 7(1): 61-79.

    [7] 黄祥. 基于综合景观指数的城乡结合部边界划分[J]. 地理空间信息, 2015, 13(4): 7-9.

    HUANG Xiang. Urban-Rural Fringe Division Based on the Landscape Pattern Index[J]. Geospatial Information, 2015, 13(4): 7-9.

    [8] 吴京航, 桂志鹏, 申力, 等. 顾及格网属性分级与空间关联的人口空间化方法[J]. 武汉大学学报(信息科学版), 2022, 47(9): 1364-1375.

    WU Jinghang, GUI Zhipeng, SHEN Li, et al. Population Spatialization by Considering Pixel-Level Attribute Grading and Spatial Association[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1364-1375.

    [9] 厉飞, 闫庆武, 邹雅婧, 等. 利用夜间灯光POI的城市建成区提取精度研究: 以珞珈一号01星和NPP/VIIRS夜间灯光影像为例[J]. 武汉大学学报(信息科学版), 2021, 46(6): 825-835.

    LI Fei, YAN Qingwu, ZOU Yajing, et al. Extraction Accuracy of Urban Built-up Area Based on Nighttime Light Data and POI: A Case Study of Luojia 1-01 and NPP/VIIRS Nighttime Light Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 825-835.

    [10] 杨洋, 黄庆旭, 章立玲. 基于DMSP/OLS夜间灯光数据的土地城镇化水平时空测度研究: 以环渤海地区为例[J]. 经济地理, 2015, 35(2): 141-148.

    YANG Yang, HUANG Qingxu, ZHANG Liling. The Spatial-Temporal Measurement on the Land Urbanization Level Using DMSP/OLS Nighttime Light Data—A Case Study of Bohai Rim[J]. Economic Geography, 2015, 35(2): 141-148.

    [11] 周亮, 赵琪, 杨帆. 基于POI与NPP/VIIRS灯光数据的城市群边界定量识别[J]. 地理科学进展, 2019, 38(6): 840-850.

    ZHOU Liang, ZHAO Qi, YANG Fan. Identification of Urban Agglomeration Boundary Based on POI and NPP/VIIRS Night Light Data[J]. Progress in Geography, 2019, 38(6): 840-850.

    [12] 张志刚, 张安明, 郭欢欢. 基于DMSP/OLS夜间灯光数据的城乡结合部空间识别研究: 以重庆市主城区为例[J]. 地理与地理信息科学, 2016, 32(6): 37-42.

    ZHANG Zhigang, ZHANG Anming, GUO Huanhuan. Spatial Recognition of the Urban-Rural Fringe Based on DMSP/OLS Nighttime Light Data: A Case Study of the Main Urban Areas of Chongqing[J]. Geography and Geo⁃Information Science, 2016, 32(6): 37-42.

    [13]

    YANG J M, LI X L, LI S M, et al. The Woody Plant Diversity and Landscape Pattern of Fine-Resolution Urban Forest Along a Distance Gradient from Points of Interest in Qingdao[J]. Ecological Indicators, 2021, 122: 107326.

    [14]

    HE X, ZHOU C S, ZHANG J, et al. Using Wavelet Transforms to Fuse Nighttime Light Data and POI Big Data to Extract Urban Built-up Areas[J]. Remote Sensing, 2020, 12(23): 3887.

    [15] 李强, 李小波, 刘剑锋. 城乡结合部规划建设模式评析与土地利用导向设计[J]. 地域研究与开发, 2015, 34(5): 143-147.

    LI Qiang, LI Xiaobo, LIU Jianfeng. Analysis and Assessment of the Mode of Planning and Construction and Design of Land Use Guidance in Rural-Urban Continuum[J]. Areal Research and Development, 2015, 34(5): 143-147.

    [16] 陈韦, 肖志中, 林建伟, 等. 武汉从“多规合一” 向空间规划改革的探索: 基于武汉市新一轮城市总规修编的思考[J]. 城市规划, 2018, 42(S2): 32-37.

    CHEN Wei, XIAO Zhizhong, LIN Jianwei, et al. Wuhan’s Exploration on Transformation from “Multi-Plan Integration” to Spatial Planning Reform: Reflections on the New Round of the City Master Plan of Wuhan[J]. City Planning Review, 2018, 42(S2): 32-37.

    [17] 闵捷. 农地城市流转特征与时空规律研究[D]. 武汉: 华中农业大学, 2007.

    MIN Jie. Study on the Feature and Spatial-Temporal Regulation of Rural-Urban Land Conversion[D]. Wuhan: Huazhong Agricultural University, 2007.

    [18] 杨喜平, 方志祥, 赵志远, 等. 顾及手机基站分布的核密度估计城市人群时空停留分布[J]. 武汉大学学报(信息科学版), 2017, 42(1): 49-55.

    YANG Xiping, FANG Zhixiang, ZHAO Zhiyuan, et al. Analyzing Space-Time Variation of Urban Human Stay Using Kernel Density Estimation by Considering Spatial Distribution of Mobile Phone Towers[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 49-55.

    [19] 张宁, 方琳娜, 周杰, 等. 北京城市边缘区空间扩展特征及驱动机制[J]. 地理研究, 2010, 29(3): 471-480.

    ZHANG Ning, FANG Linna, ZHOU Jie, et al. The Study on Spatial Expansion and Its Driving Forces in the Urban Fringe of Beijing[J]. Geographical Research, 2010, 29(3): 471-480.

    [20] 刘万增, 陆辰妮, 霍亮, 等. 最优信息熵约束的居民地点状要素选取方法[J]. 武汉大学学报(信息科学版), 2021, 46(8): 1178-1185.

    LIU Wanzeng, LU Chenni, HUO Liang, et al. Selection Method of Residential Point Features Constrained by Optimal Information Entropy[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1178-1185.

    [21]

    PENG J, HU Y N, LIU Y X, et al. A New Approach for Urban-Rural Fringe Identification: Integrating Impervious Surface Area and Spatial Continuous Wavelet Transform[J]. Landscape and Urban Planning, 2018, 175: 72-79.

图(12)  /  表(3)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  54
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2025-03-04

目录

    /

    返回文章
    返回