Spatial Delimitation of Urban-Rural Fringe Based on POI and Nighttime Light Data: A Case Study of Wuhan City
-
摘要:
城乡结合部边界识别是城乡精细规划与治理的基础工作,对于土地可持续利用、城乡一体化等进程具有推动作用。以往城乡结合部划分存在数据源单一、获取困难、时空分辨率低的不足,基于电子地图的兴趣点(point of interest,POI)和国家极地轨道伙伴关系(national polar-orbiting partnership,NPP)卫星的夜间灯光融合数据,构建NPP &POI综合指数;结合城乡空间结构关系,提出了一种新的城乡结合部空间识别方法。以武汉市为例,采用断裂点分析法识别空间突变点,求得城乡结合部边界,利用土地利用结构信息熵、归一化植被指数(normalized difference vegetation index,NDVI)以及人口密度数据对划定结果进行验证和比较,并对典型区域进行了野外实地校核。结果表明,相较于单独采用POI、夜间灯光和人口密度数据,NPP &POI综合指数考虑了夜间灯光与POI中设施类型、光照强度和分辨率差异,其划分识别出的城乡结合部边界准确度更高、时效性更强;相较于土地利用、景观等数据,NPP &POI综合指数更能表征城乡发展活力,定量识别出城乡潜在中心区与多层结构对于城乡基础设施的配置、产业分工、生态职能划分等研究具有参考意义。NPP &POI综合指数在城乡空间上的二次突变规律证实了城乡结合部作为城市扩张过程中产生的地域实体客观存在,为城乡三元结构理论提供了实证支撑。
-
关键词:
- NPP &POI综合指数 /
- 城乡结合部 /
- 断裂点分析法 /
- 城乡空间结构 /
- 夜间灯光数据
Abstract:ObjectivesThe identification of urban-rural fringe boundaries is a fundamental task for fine urban and rural planning and governance, and it plays a vital role in promoting sustainable land use and urban-rural integration. The traditional methods for delineating urban-rural boundaries have many limitations, such as reliance on single data sources, difficulty in data acquisition, and low temporal and spatial resolution.
MethodsThis paper proposes a novel method for identifying urban-rural fringe boundaries, based on the fusion of points of interest (POI) from electronic map and nighttime light data of national polar-orbiting partnership (NPP) satellite, in conjunction with the spatial structure of urban and rural space. Taking Wuhan City as a case study, this paper employs break point analysis to identify spatial mutation points and determine urban-rural fringe boundaries. The results are validated and compared using land use structure entropy, normalized difference vegetation index, and population density data, with field verification conducted in selected typical areas.
ResultsThe results show that by considering differences in facility types, light intensity, and resolution in POI and nighttime light data, the NPP &POI composite index for boundary delineation offers higher accuracy and timeliness compared to the boundaries identified using POI, nighttime light, and population density data individually. NPP &POI data can more effectively reflect the vitality of urban-rural development compared to land use and landscape data. The quantitative identification of potential central areas and multi-layered structures in urban-rural settings is significant for research on urban-rural infrastructure allocation, industrial division, and ecological function distribution.
ConclusionsThe secondary mutation pattern of NPP &POI data in urban-rural spaces confirms the objective existence of urban-rural fringe areas as territorial entities emerging from urban expansion, providing empirical support for the urban-rural triad structure theory.
-
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220597
-
表 1 武汉市POI分类统计
Table 1 Statistics of POI Classification in Wuhan City
功能类别 一级行业分类 数量/条 文体类 旅游景点、休闲娱乐、运动健身、教育培训、文化传媒、自然地物 53 966 商业类 美食、酒店、购物、生活服务、丽人、汽车服务、金融 68 508 产业类 公司企业 70 204 公服类 医疗、交通设施、政府机构 33 640 居住类 房地产 119 543 表 2 不同剖面线上NPP &POI断裂点数值统计表
Table 2 Statistics of NPP &POI Breakpoint Values on Different Profile Lines
剖面线序号 NPP &POI综合指数断裂点平均值 1~30 0.109 31~60 0.095 61~90 0.105 91~120 0.103 121~150 0.097 151~180 0.114 表 3 2010-2020年武汉市不同区域的NDVI分布情况
Table 3 Distribution of NDVI in Different Areas of Wuhan City from 2010 to 2020
年份 城市核心区 城乡结合部 乡村 平均值 标准差 平均值 标准差 平均值 标准差 2010 0.412 0.122 0.557 0.175 0.708 0.120 2011 0.418 0.102 0.576 0.176 0.721 0.124 2012 0.407 0.113 0.541 0.190 0.710 0.145 2013 0.410 0.110 0.535 0.196 0.691 0.151 2014 0.393 0.110 0.536 0.187 0.713 0.147 2015 0.394 0.103 0.547 0.193 0.710 0.155 2016 0.383 0.103 0.515 0.189 0.692 0.153 2017 0.386 0.100 0.541 0.188 0.719 0.148 2018 0.404 0.093 0.538 0.183 0.725 0.136 2019 0.410 0.094 0.501 0.183 0.694 0.144 2020 0.431 0.101 0.523 0.184 0.718 0.158 总变化量 0.019 -0.021 -0.034 0.009 0.010 0.038 -
[1] 陈宏胜, 李志刚, 王兴平. 中央—地方视角下中国城乡二元结构的建构: “一五计划” 到“十二五规划” 中国城乡演变分析[J]. 国际城市规划, 2016, 31(6): 62-67. CHEN Hongsheng, LI Zhigang, WANG Xingping. The Construction of Urban-Rural Dual Structure from a Central-Local Government Perspective: Study on the Evolution of Urban and Rural China from the First Five-Year Plan to the Twelfth Five-Year Plan[J]. Urban Planning International, 2016, 31(6): 62-67.
[2] 刘玉, 冯健. 城乡结合部农业地域功能实现程度及变化趋势: 以北京为例[J]. 地理研究, 2017, 36(4): 673-683. LIU Yu, FENG Jian. Analysis on Execution and Change of Regional Function of Agriculture in Rural-Urban Fringe: A Case Study of Beijing[J]. Geographical Research, 2017, 36(4): 673-683.
[3] ZHONG S J, WANG M S, ZHU Y, et al. Urban Expansion and the Urban–Rural Income Gap: Empirical Evidence from China[J]. Cities, 2022, 129: 103831.
[4] BRYANT C, RUSSWURM L H. The Impact of Non-Farm Development on Agriculture: A Synthesis[J]. Plan Canada, 1979, 19(2): 122-139.
[5] GU C L, CHEN T, DING J H, et al. The Study of the Urban Fringes in Chinese Megalopolises[J]. Acta Geographica Sinica, 1993, 48(4): 317-328.
[6] SHARP J S, CLARK J K. Between the Country and the Concrete: Rediscovering the Rural-Urban Fringe[J]. City & Community, 2008, 7(1): 61-79.
[7] 黄祥. 基于综合景观指数的城乡结合部边界划分[J]. 地理空间信息, 2015, 13(4): 7-9. HUANG Xiang. Urban-Rural Fringe Division Based on the Landscape Pattern Index[J]. Geospatial Information, 2015, 13(4): 7-9.
[8] 吴京航, 桂志鹏, 申力, 等. 顾及格网属性分级与空间关联的人口空间化方法[J]. 武汉大学学报(信息科学版), 2022, 47(9): 1364-1375. WU Jinghang, GUI Zhipeng, SHEN Li, et al. Population Spatialization by Considering Pixel-Level Attribute Grading and Spatial Association[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1364-1375.
[9] 厉飞, 闫庆武, 邹雅婧, 等. 利用夜间灯光POI的城市建成区提取精度研究: 以珞珈一号01星和NPP/VIIRS夜间灯光影像为例[J]. 武汉大学学报(信息科学版), 2021, 46(6): 825-835. LI Fei, YAN Qingwu, ZOU Yajing, et al. Extraction Accuracy of Urban Built-up Area Based on Nighttime Light Data and POI: A Case Study of Luojia 1-01 and NPP/VIIRS Nighttime Light Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 825-835.
[10] 杨洋, 黄庆旭, 章立玲. 基于DMSP/OLS夜间灯光数据的土地城镇化水平时空测度研究: 以环渤海地区为例[J]. 经济地理, 2015, 35(2): 141-148. YANG Yang, HUANG Qingxu, ZHANG Liling. The Spatial-Temporal Measurement on the Land Urbanization Level Using DMSP/OLS Nighttime Light Data—A Case Study of Bohai Rim[J]. Economic Geography, 2015, 35(2): 141-148.
[11] 周亮, 赵琪, 杨帆. 基于POI与NPP/VIIRS灯光数据的城市群边界定量识别[J]. 地理科学进展, 2019, 38(6): 840-850. ZHOU Liang, ZHAO Qi, YANG Fan. Identification of Urban Agglomeration Boundary Based on POI and NPP/VIIRS Night Light Data[J]. Progress in Geography, 2019, 38(6): 840-850.
[12] 张志刚, 张安明, 郭欢欢. 基于DMSP/OLS夜间灯光数据的城乡结合部空间识别研究: 以重庆市主城区为例[J]. 地理与地理信息科学, 2016, 32(6): 37-42. ZHANG Zhigang, ZHANG Anming, GUO Huanhuan. Spatial Recognition of the Urban-Rural Fringe Based on DMSP/OLS Nighttime Light Data: A Case Study of the Main Urban Areas of Chongqing[J]. Geography and Geo⁃Information Science, 2016, 32(6): 37-42.
[13] YANG J M, LI X L, LI S M, et al. The Woody Plant Diversity and Landscape Pattern of Fine-Resolution Urban Forest Along a Distance Gradient from Points of Interest in Qingdao[J]. Ecological Indicators, 2021, 122: 107326.
[14] HE X, ZHOU C S, ZHANG J, et al. Using Wavelet Transforms to Fuse Nighttime Light Data and POI Big Data to Extract Urban Built-up Areas[J]. Remote Sensing, 2020, 12(23): 3887.
[15] 李强, 李小波, 刘剑锋. 城乡结合部规划建设模式评析与土地利用导向设计[J]. 地域研究与开发, 2015, 34(5): 143-147. LI Qiang, LI Xiaobo, LIU Jianfeng. Analysis and Assessment of the Mode of Planning and Construction and Design of Land Use Guidance in Rural-Urban Continuum[J]. Areal Research and Development, 2015, 34(5): 143-147.
[16] 陈韦, 肖志中, 林建伟, 等. 武汉从“多规合一” 向空间规划改革的探索: 基于武汉市新一轮城市总规修编的思考[J]. 城市规划, 2018, 42(S2): 32-37. CHEN Wei, XIAO Zhizhong, LIN Jianwei, et al. Wuhan’s Exploration on Transformation from “Multi-Plan Integration” to Spatial Planning Reform: Reflections on the New Round of the City Master Plan of Wuhan[J]. City Planning Review, 2018, 42(S2): 32-37.
[17] 闵捷. 农地城市流转特征与时空规律研究[D]. 武汉: 华中农业大学, 2007. MIN Jie. Study on the Feature and Spatial-Temporal Regulation of Rural-Urban Land Conversion[D]. Wuhan: Huazhong Agricultural University, 2007.
[18] 杨喜平, 方志祥, 赵志远, 等. 顾及手机基站分布的核密度估计城市人群时空停留分布[J]. 武汉大学学报(信息科学版), 2017, 42(1): 49-55. YANG Xiping, FANG Zhixiang, ZHAO Zhiyuan, et al. Analyzing Space-Time Variation of Urban Human Stay Using Kernel Density Estimation by Considering Spatial Distribution of Mobile Phone Towers[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 49-55.
[19] 张宁, 方琳娜, 周杰, 等. 北京城市边缘区空间扩展特征及驱动机制[J]. 地理研究, 2010, 29(3): 471-480. ZHANG Ning, FANG Linna, ZHOU Jie, et al. The Study on Spatial Expansion and Its Driving Forces in the Urban Fringe of Beijing[J]. Geographical Research, 2010, 29(3): 471-480.
[20] 刘万增, 陆辰妮, 霍亮, 等. 最优信息熵约束的居民地点状要素选取方法[J]. 武汉大学学报(信息科学版), 2021, 46(8): 1178-1185. LIU Wanzeng, LU Chenni, HUO Liang, et al. Selection Method of Residential Point Features Constrained by Optimal Information Entropy[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1178-1185.
[21] PENG J, HU Y N, LIU Y X, et al. A New Approach for Urban-Rural Fringe Identification: Integrating Impervious Surface Area and Spatial Continuous Wavelet Transform[J]. Landscape and Urban Planning, 2018, 175: 72-79.