Low-cost GNSS Heading Determination with Fixed Baseline Constraints
-
摘要: GNSS测向是导航领域提供航向信息的重要手段。当前高性能GNSS测向产品精度可达0.20(°)/m,满足多数应用领域的需求,但其高昂的万元级成本阻碍了大众市场推广。而低成本GNSS接收机的观测量冗余度与质量均弱于高性能GNSS接收机,导致其测向精度与可靠性易受复杂环境影响。为提升低成本GNSS测向性能,本文提出固定基线约束的低成本GNSS测向方法。该方法利用双天线间固定基线约束信息,基于几何基线后验方差-协方差信息构建实时动态检验阈值,可有效增加整周模糊度解算成功率,从而提升低成本GNSS测向的精度与可靠性。通过实测动态数据对所提方法进行测试,与传统方法对比,整周模糊度固定成功率提升了7%,达到了0.40(°)/m的测向精度。Abstract: Objectives: Global Navigation Satellite System (GNSS) heading determination is an important technology in the field of navigation. At present, the accuracy of high-performance GNSS heading determination receivers can reach 0.20(°)/m, which can satisfy the requirements of most applications, but the cost of 10, 000 yuan hinders the mass market promotion. However, the observation redundancy and quality of the low-cost GNSS receivers are weaker than those of the high-performance GNSS receiver, which makes the heading determination accuracy and reliability of the low-cost GNSS receiver vulnerable to complex environments. Methods: In order to improve the performance of low-cost GNSS heading determination, a low-cost GNSS heading determination method with fixed baseline constraints is proposed in this paper. The method deploys fixed baseline constraints between the dual antennas and constructs real-time dynamic detection thresholds based on a posteriori variance-covariance of geometric baseline, which can effectively increase the success rate of integer ambiguity resolution, thus improving the accuracy and reliability of low-cost GNSS heading determination. Results: The proposed method was tested with real kinematic data. Compared to the traditional methods, the success rate of the integer ambiguity resolution was improved by 7%, and the heading determination accuracy of 0.4 (°)/m was achieved. Conclusions: It is shown that the low-cost GNSS vectoring method with fixed baseline constraints proposed in this paper can effectively increase the success rate of whole-period ambiguity solution and improve the accuracy and reliability of low-cost GNSS vectoring.
-
-
[1] Sun R, Cheng Q, Wang J. Precise Vehicle Dynamic Heading and Pitch Angle Estimation Using Time-differenced Measurements from a Single GNSS Antenna[J]. GPS Solutions, 2020, 24(3):1-9
[2] Cai Xiaobo, Xu Houze, Wang Yong, et al. Direct Attitude Determination Method Based on Vehicle-mounted Three-antenna GNSS and the Accuracy Evaluation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6):820-825(蔡小波, 许厚泽, 王勇, 等. 车载三天线GNSS的直接法定姿及精度评估[J]. 武汉大学学报(信息科学版), 2018, 43(6):820-825) [3] Ding W, Sun W, Gao Y, et al. Carrier Phase-Based Precise Heading and Pitch Estimation Using a Low-Cost GNSS Receiver[J]. Remote Sensing, 2021, 13(18):3642
[4] Teunissen P, Giorgi G, Buist P. Testing of a New Single-frequency GNSS Carrier Phase Attitude Determination Method:Land, Ship, and Aircraft Experiments[J]. GPS Solutions, 2011, 15(1):15-28
[5] Li N, Zhao L, Li L, et al. Integrity Monitoring of High-accuracy GNSS-based Attitude Determination[J]. GPS Solutions, 2018, 22(4):1-3
[6] Wang X, Yao Y, Xu C, et al. An Improved Single-epoch Attitude Determination Method for Low-cost Single-frequency GNSS Receivers[J]. Remote Sensing, 2021, 13(14):2746
[7] Odolinski R, Teunissen P. Single-frequency, Dual-GNSS Versus Dual-frequency, Single-GNSS:a Low-cost and High-grade Receivers GPS-BDS RTK Analysis[J]. Journal of Geodesy, 2016, 90(11):1255-1278
[8] Lachapelle G, Gratton P. GNSS Precise Point Positioning with Android Smartphones and Comparison with High Performance Receivers[C]//Proc. of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). Chongqing, China:IEEE, 2019:1-9.
[9] Zhang Xiaohong, Tao Xianlu, Wang Yingzhe, et al. MEMS-Enhanced Smartphone GNSS High-Precision Positioning for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1740-1749(张小红, 陶贤露, 王颖喆, 等. 城市场景智能手机GNSS/MEMS融合车载高精度定位[J]. 武汉大学学报(信息科学版), 2022, 47(10):1740-1749) [10] Yang Y, Mao X, Tian W. A Novel Method for Low-cost MIMU Aiding GNSS Attitude Determination[J]. Measurement Science and Technology, 2016, 27(7):075003
[11] Rychlicki M, Kasprzyk Z, Rosiński A. Analysis of Accuracy and Reliability of Different Types of GPS Receivers[J]. Sensors, 2020, 20(22):1-14
[12] Zhu F, Hu Z, Liu W, et al. Dual-antenna GNSS Integrated with MEMS for Reliable and Continuous Attitude Determination in Challenged Environments[J]. IEEE Sensors Journal, 2019, 19(9):3449-3461
[13] Tang Weiming, Sun Hongxing, Liu Jingnan. Ambiguity Resolution of Single Epoch Single Frequency Data with Baseline Length Constraint Using LAMBDA Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5):444-446(唐卫明, 孙红星, 刘经南. 附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度确定[J]. 武汉大学学报(信息科学版), 2005, 30(5):444-446) [14] Ma L, Lu L, Zhu F, et al. Baseline length Constraint Approaches for Enhancing GNSS Ambiguity Resolution:Comparative Study[J]. GPS Solutions, 2021, 25(2):1-5
[15] Wu S, Zhao X, Zhang L, et al. Improving Reliability and Efficiency of RTK Ambiguity Resolution with Reference Antenna Array:BDS+ GPS Analysis and Test[J]. Journal of Geodesy. 2019, 93(9):1297-1311
[16] Tang Jiaming, Chai Yanju, Wen Debao, et al. Algorithm of Simultaneous Ambiguity Resolution of GNSS Multi-Antenna Network for Single Epoch[J]. Journal of Geodesy and Geodynamics, 2019, 39(03):262-268(汤佳明, 柴艳菊, 闻德保, 等. GNSS多天线基线网单历元模糊度同步解算法[J]. 大地测量与地球动力学, 2019, 39(03):262-268) [17] Nie Zhixi, Wang Zhenjie, Ou Jikun, et al. On the Effect of Linearization and Approximation of Nonlinear Baseline Length Constraint for Ambiguity Resolution[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):168-173(聂志喜, 王振杰, 欧吉坤, 等. 非线性基线长约束条件线性化近似对模糊度解算的影响[J]. 测绘学报, 2015, 44(02):168-173) [18] Li Y, Zhao L, Jia C, et al. Low-Cost Dual-Antenna GNSS Precision Heading Determination Method with Baseline Length Constraint[C]//Proc. of the China Satellite Navigation Conference (CSNC 2021) Proceedings. Nanchang, China:Springer, 2021:389-402
[19] Teunissen P. The LAMBDA Method for the GNSS Compass[J]. Artificial Satellites, 2006, 41(3):89-103
[20] Zhou Xiaoqing, Shan Hongyi, Lu Liguo, et al. Performance Comparison Between Two Baseline Length Constraint Methods of Ambiguity Resolution[J]. Science of Surveying and Mapping, 2016, 41(6):53-58(周晓青, 单弘煜, 卢立果, 等. 附有长度约束的模糊度解算方法比较[J]. 测绘科学, 2016, 41(6):53-8.) [21] Jia Chun, Zhao Lin, Li Liang, et al. BDS Triple-frequency Tightly Coupled Short-baseline RTK Method by Calibrating the Between-receiver Inter-frequency Biases[J]. Scientia Sinica Terrae, 2020, 50(1):90-103(贾春, 赵琳, 李亮, 等. 改正接收机频间偏差的短基线北斗三频紧组合RTK方法[J]. 中国科学:地球科学. 2020, 50(1):90-103) [22] Liu Jingnan, Deng Chenlong, Tang Weiming. Review of GNSS Ambiguity Validation Theory[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1009-1016(刘经南, 邓辰龙, 唐卫明. GNSS整周模糊度确认理论方法研究进展[J]. 武汉大学学报(信息科学版), 2014, 39(9):1009-1016) -
期刊类型引用(14)
1. 刘学习,朱守庆,陈国,张克非,郑南山,刘婧璇. 基于全球统一坐标框架的GNSS精密轨道与钟差产品一致性分析. 测绘学报. 2025(03): 432-447 . 百度学术
2. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 . 百度学术
3. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 . 百度学术
4. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 . 百度学术
5. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 . 百度学术
6. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 . 百度学术
7. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 . 百度学术
8. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 . 百度学术
9. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 . 百度学术
10. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 . 百度学术
11. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 . 百度学术
12. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 . 百度学术
13. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 . 百度学术
14. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 402
- HTML全文浏览量: 22
- PDF下载量: 41
- 被引次数: 24