Spatial Downscaling of Remote Sensing Parameters from Perspective of Data Fusion
-
摘要:
空间分辨率不足是限制遥感参量数据精细应用的主要瓶颈问题之一,而空间降尺度是提升遥感参量数据空间分辨率与应用能力的有效途径。研究学者针对不同遥感参量已发展了类型多样的降尺度方法,但还未形成统一、通用的分类体系。在深入分析当前各类参量降尺度共性问题的基础上,从降尺度所需的互补信息出发,以数据融合的视角对空间降尺度方法进行系统总结,归纳出多参量融合、时‐空融合、遥感‐模型融合和超分辨率重建隐式融合4类降尺度方法,剖析了各类方法的优缺点和适用场景,探讨了空间降尺度方法研究的发展趋势,为提升遥感数据精细化应用能力提供理论与技术支撑。
Abstract:Low spatial resolution is one of the main bottlenecks restricting the fine application of remote sensing parameters. Spatial downscaling is an effective way to improve their spatial resolution and application capabilities. Researchers have developed various downscaling methods for different remote sensing parameters. However, a unified and general method classification system has not yet been formed. Based on the in-depth commonality analysis of the downscaling of various parameters, this paper systematically summarizes the spatial downscaling methods from the perspective of data fusion, taking into account the required complementary information. Four types of downscaling methods are summarized: Multi-parameter fusion, spatiotemporal fusion, remote sensing-model fusion, and super-resolution reconstruction implicit fusion. The advantages, disadvantages, and applicable scenarios of various methods are analyzed, and the development trend of spatial downscaling method research is discussed. It can provide theoretical and technical support for improving the refined application ability of remote sensing data.
-
目前,北斗导航卫星系统(BDS)已实现局域覆盖,随着系统建设的不断完善和应用的不断拓展,与之相关的各类数据处理软件的开发成为重要的研究内容。因此,自主开发北斗高精度数据处理软件,成为发展高精度位置服务的迫切任务[1-8]。因北斗导航卫星系统与GPS在星座构造、坐标框架、时间系统、信号频率等方面具有明显差异[9-15],现有的高精度GPS数据处理软件无法直接处理北斗数据。本文针对北斗高精度数据处理的系统设计、数据流、功能模块及高精度算法实现等进行了研究,研制开发了一套高精度北斗基线解算软件BGO(BeiDou Navigation Satellite System/Global Positioning System Office),并将其用于高速铁路高精度控制测量建网。通过与商业软件TGO(Trimble Geomatics Office)和TBC(Trimble Business Center),及高精度科研软件Bernese进行对比测试、性能分析,验证了该软件的正确性和有效性。
1 系统的设计与模块算法的实现
1.1 系统设计与数据流分析
北斗和GPS基线解算软件主要包含北斗基线处理、GPS基线处理及联合基线处理3大模块。各模块间相互独立,但使用相同的数据结构,且数据流基本一致。数据处理流程如图 1所示。
基线解算之前,需选择有效双频观测数据,具体包含低高度角卫星剔除、观测值粗差剔除、星历未获取观测数据剔除等。剔除质量较差的观测数据可通过可视化的方式实现。通过双频数据组合有效消除电离层延迟影响,伪距消电离组合能算出测站精确至10 m内的概略位置,从而形成网络拓扑图,便于用户查看站点的平面分布。基线解算时,北斗与GPS独立系统数据处理算法相同;联合处理需选择统一的坐标和时间框架,随着多余观测数的增加,还需设置合理的模糊度固定限值。基线解算后,进行网平差,应剔除不合格基线,直至平差结果满足要求。
1.2 高精度基线解算算法实现
高精度基线解算利用双差观测量建立误差方程,北斗双差观测量构造如式(1):
$$ \mathit{\Delta} \nabla L^{{C_m}{C_n}}_{{S_i}{S_j}} = \left( {L^{{C_n}}_{{S_j}} - L^{{C_n}}_{{S_i}}} \right) - \left( {L^{{C_m}}_{{S_j}} - L^{{C_m}}_{{S_i}}} \right) $$ (1) 式中,Δ▽L表示双差观测量;Si和Sj表示任意站点;Cm和Cn表示任意北斗卫星。
依据式(1)构建的双差观测量,建立误差方程,如式(2):
$$ \left[ \begin{array}{l} \mathit{\Delta} \nabla \boldsymbol{\varPhi} \\ \mathit{\Delta} \nabla \boldsymbol{P} \end{array} \right] = \boldsymbol{BX} + \boldsymbol{A}\mathit{\Delta} \nabla \boldsymbol{N} + \boldsymbol{V} $$ (2) 式中,Δ▽Φ和Δ▽P分别表示卫星载波相位和伪距双差观测量;X表示基线向量;Δ▽N表示双差整周模糊度;B和A为系数阵;V为残差向量。
利用式(2)构建的误差方程,解算基线向量和双差整周模糊度浮点解。利用LAMBAD方法[16, 17]固定双差整周模糊度后去除。再利用载波相位观测值获取高精度基线向量结果。基线解算过程中,主要利用抗差估计的切比雪夫多项式拟合法[18]及MW-GF组合法[19]探测与修复周跳。
对北斗和GPS双系统基线解算,只需将各系统的双差观测量误差方程叠加后平差计算,即可实现双系统联合基线解算。但需注意,星间差分需选择同一系统卫星,否则会引入系统间信号硬件延迟[20],影响双差整周模糊度的固定。另外,北斗和GPS在时间框架、坐标框架等存在一定差异,双系统联合解算需保证框架的统一。
北斗和GPS时间转换公式如式(3):
$$ {t_C} = {t_G}-14\;{\rm{s}} $$ (3) 式中,tC和tG分别表示北斗时和GPS时,两者均为原子时,起算原点不同[13]。
北斗和GPS坐标转换公式如式(4):
$$ \begin{array}{c} \left[ {\begin{array}{*{20}{c}} {{X_C}}\\ {{Y_C}}\\ {{Z_C}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{X_G}}\\ {{Y_G}}\\ {{Z_G}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{T_X}}\\ {{T_Y}}\\ {{T_Z}} \end{array}} \right] + \\ \left[ {\begin{array}{*{20}{c}} D&{ - {R_Z}}&{{R_Y}}\\ {{R_Z}}&D&{ - {R_X}}\\ { - {R_Y}}&{{R_X}}&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{X_G}}\\ {{Y_G}}\\ {{Z_G}} \end{array}} \right] \end{array} $$ (4) 式中,北斗坐标(XC,YC,ZC)与GPS坐标(XG,YG,ZG)可通过七参数TX、TY、TZ、D、RX、RY、RZ进行转换。北斗CGCS2000坐标系采用ITRF97框架2000历元的坐标和速度场,当前GPS WGS84坐标和ITRF08基本一致。因此,可利用ITRF97框架2000历元与ITRF08间转换的七参数(ITRF网站公布)实现北斗与GPS坐标框架的统一[11, 12]。
2 BGO数据处理实例与性能测试
2.1 高速铁路CPI控制网基线解算
处理高速铁路CPI控制网时,通过读取观测文件和星历文件,单点定位生成控制网的基线网络拓扑图,如图 2所示。基线解算前,设置相关参数包括卫星截止高度角、误差限差参数、框架、对流层模型、电离层模型、模糊度Ratio值、同步最小观测历元数等。设置完成后,可选择北斗、GPS、联合3种模式进行基线解算。基线解算完成后,软件界面中将显示解算的基线分量及其精度,并可显示残差向量检核基线解算效果。
2.2 BGO、TGO、Bernese软件处理GPS基线结果比较
为了测试BGO解算GPS基线的正确性,将其与TGO和Bernese软件处理结果进行了比较,得到57条GPS基线(基线最长6 667 m,最短446 m)的比较结果,如图 3所示。
图 3(a)、3(b)分别表示BGO软件与TGO、Bernese软件处理GPS基线分量的差值ΔX、ΔY、ΔZ。图 3(a)中,BGO和TGO有52条基线在X、Y、Z方向的分量差值均在2 cm内,有48条基线各分量差值在mm级。TGO解算少量基线验后方差分量超限,与BGO基线分量差值较大。图 3(b)中,BGO和Bernese有55条基线在X、Y、Z方向的分量差值均在2 cm内,有49条基线各分量差值在mm级。
图 4(a)~4(c)分别表示BGO、TGO、Bernese软件处理GPS基线的内符合精度σX、σY、σZ(BGO、TGO、Bernese软件基线解算精度分别精确至0.1 mm、1 mm和0.1 mm)。整体上,约90%的基线3个软件的解算精度相当。
2.3 BGO、TBC软件处理北斗与GPS联合基线结果
为了测试BGO解算北斗与GPS联合基线的性能,本文选用美国Trimble的商业软件TBC与之进行比较。同上57条基线,每条基线观测数据均包含北斗与GPS观测数据。图 5展示了BGO和TBC处理北斗与GPS联合基线分量的差值ΔX、ΔY、ΔZ。图 5可见,98%的基线分量差值分布在mm级,表明BGO软件处理联合基线能达到与TBC软件相当的水平。另外,两者内符合精度绝大部分均在mm级,故图 5中未加以比较。
由此可知,BGO软件处理GPS基线、北斗与GPS联合基线的内外符合精度能达到TGO、Bernese、TBC相当的水平。因此,以BGO软件处理GPS、北斗与GPS联合基线结果为参考值,分析该软件处理北斗基线结果的正确性和可靠性,如图 6和图 7所示。图 6比较了北斗与GPS、联合基线分量的差值,图 7比较了北斗、GPS、联合基线解算的内符合精度。
图 6(a)表示BGO软件处理北斗与GPS基线分量的差值ΔX、ΔY、ΔZ,其中有43条基线在X、Y、Z方向上的分量差值Δx、Δy、Δz在2 cm内,有31条基线在X、Y、Z方向上的分量差值在mm级。图 6(b)表示BGO软件处理北斗与联合基线分量的差值,其中有54条基线在X、Y、Z方向上的分量差值在2 cm内,有38条基线在X、Y、Z方向上的分量差值在mm级(图 6中第6条基线北斗为浮点解,各分量差值结果较大,图中置为0)。
图 7中,93%的联合基线在X、Y、Z方向上的分量精度分别优于0.5 mm、1 mm、0.5 mm;约90%的北斗基线和95%的GPS基线在X、Y、Z方向上的分量精度分别优于1 mm、2 mm、1 mm。由北斗、GPS、联合基线3者精度比较可知,在北斗试运行阶段,GPS基线内符合精度略优于北斗,北斗与GPS联合系统基线内符合精度明显高于独立系统。
2.4 BGO基线网平差及其精度分析
BGO具备网平差功能,根据网平差后的基线分量改正数、相对中误差、点位精度等判断基线解算结果的可靠性。对上述解算的北斗、GPS、联合基线分别进行无约束网平差。
北斗、GPS、联合基线无约束网平差的平差改正数δX、δY、δZ绝大部分在±1 cm内,如图 8(a)~8(c)所示。最弱边相对中误差优于5.5 ppm(规范限值),具体见表 1。据图 8、表 1及《高速铁路工程测量规范》[21]可知,BGO能合理稳定地解算北斗、GPS及联合基线,解算结果中的基线向量改正数、最弱边相对中误差、最弱点点位精度均满足CPI控制测量要求,各系统解算均能精确获得24个CPI控制点坐标。
表 1 GPS、北斗、联合无约束平差结果统计Table 1. The Statistics of GPS, BDS and BDS/GPS Combined Unconstrained Adjustment Results解算模式 独立基线 多余观测数 控制点个数 最弱边相对中误差/ppm 最弱点点位精度/mm GPS 55 66 24 3.6 23.6 北斗 51 57 24 3.1 26.9 联合 57 72 24 3.7 17.9 3 结语
本文系统地研究了北斗与GPS联合基线解算的算法,自主开发了北斗高精度基线解算软件BGO。通过实测高铁CPI控制网的数据处理测试表明:软件能进行高精度地处理北斗与GPS数据, 以及北斗与GPS联合数据处理;GPS基线解算性能与天宝TGO软件相当,能达到与Bernese软件一致的精度;北斗与GPS基线处理能达到与TBC相当的水平。BGO最大的优势在于能对北斗和GPS进行联合解算,从而提高北斗或GPS单系统的基线解算合格率和精度。经高速铁路CPI控制网实例测试,证明该软件处理基线结果可用于高精度北斗和GPS测量控制网的数据处理。
http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220549
-
表 1 本文涉及典型目标遥感参量的空间分辨率概况
Table 1 Spatial Resolution of Typical Target Remote Sensing Parameters in This Paper
遥感参量 典型参量 分辨率/km 主要数据来源 水循环参量:降水、陆面蒸散、土壤水分、雪水当量、蓄水量等 降水 约25 热带降雨测量任务 约10 全球降水测量计划 土壤水分 约40 土壤水分和海洋盐度卫星 约36 土壤水分主‐被动遥感卫星 约25 高级微波扫描辐射计/风云三号微波辐射成像仪 地表辐射收支参量:太阳辐射、宽波段反照率、地表温度和热红外发射率、地表长波辐射收支等 地表温度 约5 甚高分辨率辐射计/欧洲气象卫星可见光红外成像仪 约3 欧洲气象卫星自旋增强可见光与红外成像仪 约1 中分辨率成像光谱仪 大气循环参量:大气温度、湿度、风速、气溶胶、二氧化碳/甲烷和其他温室气体、臭氧等 气溶胶光学厚度 约10 中分辨率成像光谱仪 约5 葵花8号高像素红外线成像仪/甚高分辨率辐射计 约4 地球静止环境业务卫星 约3 中分辨率成像光谱仪/自旋增强可见光与红外成像仪 生物物理/化学参量:冠层生化特性、植被指数、吸收光合有效辐射比例、植被覆盖度等 植被指数 约1 中分辨率成像光谱仪/植被传感器 海洋参量:海表热通量、海洋水色、海冰、海表温度等 海表温度 约25 高级微波扫描辐射计 -
[1] 李小文, 王祎婷. 定量遥感尺度效应刍议[J]. 地理学报, 2013, 68(9): 1163-1169. Li Xiaowen, Wang Yiting. Prospects on Future Developments of Quantitative Remote Sensing[J]. Acta Geographica Sinica, 2013, 68(9): 1163-1169.
[2] Wu X D, Xiao Q, Wen J G, et al. Advances in Quantitative Remote Sensing Product Validation: Overview and Current Status[J]. Earth‐Science Reviews, 2019, 196: 102875.
[3] Peng J, Loew A, Merlin O, et al. A Review of Spatial Downscaling of Satellite Remotely Sensed Soil Moisture[J]. Reviews of Geophysics, 2017, 55(2): 341-366.
[4] Sabaghy S, Walker J P, Renzullo L J, et al. Spatially Enhanced Passive Microwave Derived Soil Moisture: Capabilities and Opportunities[J]. Remote Sensing of Environment, 2018, 209: 551-580.
[5] 栾海军, 田庆久, 章欣欣, 等. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492. Luan Haijun, Tian Qingjiu, Zhang Xinxin, et al. Trends on Scaling Research for Land Surface Parameters in Quantitative Remote Sensing[J]. Advances in Earth Science, 2018, 33(5): 483-492.
[6] Atkinson P M. Downscaling in Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 22: 106-114.
[7] 唐韵玮, 张景雄. 基于面‐点协同克里格和多点地统计模拟的遥感影像融合方法[J]. 武汉大学学报(信息科学版), 2014, 39(7): 856-861. Tang Yunwei, Zhang Jingxiong. Area-to-Point Cokriging and Multiple-point Geostatistical Simulation for Remotely Sensed Image Fusion[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 856-861.
[8] Qu Y Q, Zhu Z L, Montzka C, et al. Inter-Comparison of Several Soil Moisture Downscaling Methods over the Qinghai-Tibet Plateau, China[J]. Journal of Hydrology, 2021, 592: 125616.
[9] 周壮, 赵少杰, 蒋玲梅. 被动微波遥感土壤水分产品降尺度方法研究综述[J]. 北京师范大学学报(自然科学版), 2016, 52(4): 479-485. Zhou Zhuang, Zhao Shaojie, Jiang Lingmei. Downscaling Methods of Passive Microwave Remote Sensing of Soil Moisture[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 479-485.
[10] 覃湘栋, 庞治国, 江威, 等. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10): 1728-1742. Qin Xiangdong, Pang Zhiguo, Jiang Wei, et al. Progress and Development Trend of Soil Moisture Microwave Remote Sensing Retrieval Method[J]. Journal of Geo‐Information Science, 2021, 23(10): 1728-1742.
[11] Zhan W F, Chen Y H, Zhou J, et al. Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats[J]. Remote Sensing of Environment, 2013, 131: 119-139.
[12] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018, 30(2): 1-11. Dong Wenquan, Meng Jihua. Review of Spatiotemporal Fusion Model of Remote Sensing Data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 1-11.
[13] 张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4): 603-619. Zhang Lifu, Peng Mingyuan, Sun Xuejian, et al. Progress and Bibliometric Analysis of Remote Sensing Data Fusion Methods(1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4): 603-619.
[14] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166. Li Shutao, Li Congyu, Kang Xudong. Development Status and Future Prospects of Multi-source Remote Sensing Image Fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148-166.
[15] Ghassemian H. A Review of Remote Sensing Image Fusion Methods[J]. Information Fusion, 2016, 32: 75-89.
[16] Schmitt M, Zhu X X. Data Fusion and Remote Sensing: An Ever-Growing Relationship[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(4): 6-23.
[17] Ghamisi P, Rasti B, Yokoya N, et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1): 6-39.
[18] Jia S F, Zhu W B, Lű A, et al. A Statistical Spatial Downscaling Algorithm of TRMM Precipitation Based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011, 115(12): 3069-3079.
[19] 曹永攀, 晋锐, 韩旭军, 等. 基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究[J]. 遥感技术与应用, 2011, 26(5): 590-597. Cao Yongpan, Jin Rui, Han Xujun, et al. A Downscaling Method for AMSR-E Soil Moisture Using MODIS Derived Dryness Index[J]. Remote Sensing Technology and Application, 2011, 26(5): 590-597.
[20] Xu S G, Wu C Y, Wang L, et al. A New Satellite-Based Monthly Precipitation Downscaling Algorithm with Non-stationary Relationship Between Precipitation and Land Surface Characteristics[J]. Remote Sensing of Environment, 2015, 162: 119-140.
[21] Das D, Ganguly A R, Obradovic Z. A Bayesian Sparse Generalized Linear Model with an Application to Multiscale Covariate Discovery for Observed Rainfall Extremes over the United States[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6689-6702.
[22] Piles M, Camps A, Vall-Llossera M, et al. Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3156-3166.
[23] Wang Y L, Huang X D, Wang J S, et al. AMSR2 Snow Depth Downscaling Algorithm Based on a Multifactor Approach over the Tibetan Plateau, China[J]. Remote Sensing of Environment, 2019, 231: 111268.
[24] He X G, Chaney N W, Schleiss M, et al. Spatial Downscaling of Precipitation Using Adaptable Random Forests[J]. Water Resources Research, 2016, 52(10): 8217-8237.
[25] Weng Q H, Fu P. Modeling Diurnal Land Temperature Cycles over Los Angeles Using Downscaled GOES Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 78-88.
[26] Srivastava P K, Han D W, Ramirez M R, et al. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application[J]. Water Resources Management, 2013, 27(8): 3127-3144.
[27] Li W, Ni L, Li Z L, et al. Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2299-2307.
[28] Yuan Q Q, Shen H F, Li T W, et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges[J]. Remote Sensing of Environment, 2020, 241: 111716.
[29] Dong P, Gao L, Zhan W F, et al. Global Comparison of Diverse Scaling Factors and Regression Models for Downscaling Landsat-8 Thermal Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 44-56.
[30] Chakrabarti S, Bongiovanni T, Judge J, et al. Downscaling Satellite-Based Soil Moisture in Heterogeneous Regions Using High-Resolution Remote Sensing Products and Information Theory: A Synthetic Study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 85-101.
[31] Piles M, Petropoulos G P, Sánchez N, et al. Towards Improved Spatio-Temporal Resolution Soil Moisture Retrievals from the Synergy of SMOS and MSG SEVIRI Spaceborne Observations[J]. Remote Sensing of Environment, 2016, 180: 403-417.
[32] Zhao W, Li A N, Jin H A, et al. Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and in Situ Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2632-2645.
[33] Alemohammad S H, Kolassa J, Prigent C, et al. Global Downscaling of Remotely Sensed Soil Moisture Using Neural Networks[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5341-5356.
[34] Long D, Bai L L, Yan L, et al. Generation of Spatially Complete and Daily Continuous Surface Soil Moisture of High Spatial Resolution[J]. Remote Sensing of Environment, 2019, 233: 111364.
[35] Hu F M, Wei Z S, Zhang W, et al. A Spatial Downscaling Method for SMAP Soil Moisture Through Visible and Shortwave-Infrared Remote Sensing Data[J]. Journal of Hydrology, 2020, 590: 125360.
[36] 邓雅文, 凌子燕, 孙娜, 等. 基于广义回归神经网络的京津冀地区土壤湿度遥感逐日估算研究[J]. 地球信息科学学报, 2021, 23(4): 749-761. Deng Yawen, Ling Ziyan, Sun Na, et al. Daily Estimation of Soil Moisture over Beijing-Tianjin-Hebei Region Based on General Regression Neural Network Model[J]. Journal of Geo‑Information Science, 2021, 23(4): 749-761.
[37] Huang S Z, Zhang X, Chen N C, et al. Generating High-Accuracy and Cloud-Free Surface Soil Moisture at 1 km Resolution by Point-Surface Data Fusion over the Southwestern U.S[J]. Agricultural and Forest Meteorology, 2022, 321: 108985.
[38] Zakšek K, Oštir K. Downscaling Land Surface Temperature for Urban Heat Island Diurnal Cycle Analysis[J]. Remote Sensing of Environment, 2012, 117: 114-124.
[39] Hutengs C, Vohland M. Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression[J]. Remote Sensing of Environment, 2016, 178: 127-141.
[40] Zhang Q, Wang N L, Cheng J, et al. A Stepwise Downscaling Method for Generating High-Resolution Land Surface Temperature from AMSR-E Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5669-5681.
[41] 张义峥, 吴鹏海, 段四波, 等. Landsat 8地表温度产品降尺度深度学习方法研究[J]. 遥感学报, 2021, 25(8): 1767-1777. Zhang Yizheng, Wu Penghai, Duan Sibo, et al. Downscaling of Landsat 8 Land Surface Temperature Products Based on Deep Learning[J]. National Remote Sensing Bulletin, 2021, 25(8): 1767-1777.
[42] 祝新明, 宋小宁, 冷佩, 等. 多尺度地理加权回归的地表温度降尺度研究[J]. 遥感学报, 2021, 25(8): 1749-1766. Zhu Xinming, Song Xiaoning, Leng Pei, et al. Spatial Downscaling of Land Surface Temperature with the Multi-scale Geographically Weighted Regression[J]. National Remote Sensing Bulletin, 2021, 25(8): 1749-1766.
[43] 王斐, 覃志豪, 宋彩英. 利用Landsat TM影像进行地表温度像元分解[J]. 武汉大学学报(信息科学版), 2017, 42(1): 116-122. Wang Fei, Qin Zhihao, Song Caiying. An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 116-122.
[44] Ma Z Q, Shi Z, Zhou Y, et al. A Spatial Data Mining Algorithm for Downscaling TMPA 3B43 V7 Data over the Qinghai-Tibet Plateau with the Effects of Systematic Anomalies Removed[J]. Remote Sensing of Environment, 2017, 200: 378-395.
[45] 胡实, 韩建, 占车生, 等. 太行山区遥感卫星反演降雨产品降尺度研究[J]. 地理研究, 2020, 39(7): 1680-1690. Hu Shi, Han Jian, Zhan Chesheng, et al. Spatial Downscaling of Remotely Sensed Precipitation in Taihang Mountains[J]. Geographical Research, 2020, 39(7): 1680-1690.
[46] Tan W W, Tian L Q, Shen H F, et al. A New Downscaling-Calibration Procedure for TRMM Precipitation Data over Yangtze River Economic Belt Region Based on a Multivariate Adaptive Regression Spline Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4702819.
[47] 张亮林, 潘竟虎, 赖建波, 等. 基于GWR降尺度的京津冀地区PM2.5质量浓度空间分布估算[J]. 环境科学学报, 2019, 39(3): 832-842. Zhang Lianglin, Pan Jinghu, Lai Jianbo, et al. Estimation of PM2.5 Mass Concentrations in Beijing-Tianjin-Hebei Region Based on Geographically Weighted Regression and Spatial Downscaling Method[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 832-842.
[48] Yang Q Q, Yuan Q Q, Yue L W, et al. Mapping PM2.5 Concentration at a Sub-km Level Resolution: A Dual-Scale Retrieval Approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165: 140-151.
[49] Carella G, Vrac M, Brogniez H, et al. Statistical Downscaling of Water Vapour Satellite Measurements from Profiles of Tropical Ice Clouds[J]. Earth System Science Data, 2020, 12(1): 1-20.
[50] Jin Y, Ge Y, Wang J H, et al. Deriving Temporally Continuous Soil Moisture Estimations at Fine Resolution by Downscaling Remotely Sensed Product[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 8-19.
[51] Zhang T, Li B L, Yuan Y C, et al. Spatial Downscaling of TRMM Precipitation Data Considering the Impacts of Macro-Geographical Factors and Local Elevation in the Three-River Headwaters Region[J]. Remote Sensing of Environment, 2018, 215: 109-127.
[52] Li L F, Wu J J. Spatiotemporal Estimation of Satellite-Borne and Ground-Level NO2 Using Full Residual Deep Networks[J]. Remote Sensing of Environment, 2021, 254: 112257.
[53] 陈旻, 闾国年, 周成虎, 等. 面向新时代地理学特征研究的地理建模与模拟系统发展及构建思考[J]. 中国科学: 地球科学, 2021, 51(10): 1664-1680. Chen Min, Guonian Lü, Zhou Chenghu, et al. Thinking on the Development and Construction of Geographic Modeling and Simulation System for the Study of Geographical Characteristics in the New Era[J]. Scientia Sinica (Terrae), 2021, 51(10): 1664-1680.
[54] Merlin O, Jacob F, Wigneron J P, et al. Multidimensional Disaggregation of Land Surface Temperature Using High-Resolution Red, Near-Infrared, Shortwave-Infrared, and Microwave-L Bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1864-1880.
[55] 宋承运, 胡光成, 王艳丽, 等. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26. Song Chengyun, Hu Guangcheng, Wang Yanli, al et. Downscaling FY-3B Soil Moisture Based on Apparent Thermal Inertia and Temperature Vegetation Index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[56] Merlin O, Chehbouni A, Walker J P, et al. A Simple Method to Disaggregate Passive Microwave-Based Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 786-796.
[57] Merlin O, Walker J P, Chehbouni A, et al. Towards Deterministic Downscaling of SMOS Soil Moisture Using MODIS Derived Soil Evaporative Efficiency[J]. Remote Sensing of Environment, 2008, 112(10): 3935-3946.
[58] Merlin O, Bitar A, Walker J P, et al. An Improved Algorithm for Disaggregating Microwave-Derived Soil Moisture Based on Red, Near-Infrared and Thermal-Infrared Data[J]. Remote Sensing of Environment, 2010, 114(10): 2305-2316.
[59] Merlin O, Bitar A, Walker J P, et al. A Sequential Model for Disaggregating Near-Surface Soil Moisture Observations Using Multi-resolution Thermal Sensors[J]. Remote Sensing of Environment, 2009, 113(10): 2275-2284.
[60] Sun H, Cai C C, Liu H X, et al. Microwave and Meteorological Fusion: A Method of Spatial Downscaling of Remotely Sensed Soil Moisture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4): 1107-1119.
[61] Song P L, Zhang Y Q, Tian J. Improving Surface Soil Moisture Estimates in Humid Regions by an Enhanced Remote Sensing Technique[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091459.
[62] Ranney K J, Niemann J D, Lehman B M, et al. A Method to Downscale Soil Moisture to Fine Resolutions Using Topographic, Vegetation, and Soil Data[J]. Advances in Water Resources, 2015, 76: 81-96.
[63] Hoehn D C, Niemann J D, Green T R, et al. Downscaling Soil Moisture over Regions that Include Multiple Coarse-Resolution Grid Cells[J]. Remote Sensing of Environment, 2017, 199: 187-200.
[64] Cowley G S, Niemann J D, Green T R, et al. Impacts of Precipitation and Potential Evapotranspiration Patterns on Downscaling Soil Moisture in Regions with Large Topographic Relief[J]. Water Resources Research, 2017, 53(2): 1553-1574.
[65] Merlin O, Chehbouni A G, Kerr Y H, et al. A Combined Modeling and Multispectral/Multiresolution Remote Sensing Approach for Disaggregation of Surface Soil Moisture: Application to SMOS Configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2036-2050.
[66] Merlin O, Rudiger C, Bitar A, et al. Disaggregation of SMOS Soil Moisture in Southeastern Australia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1556-1571.
[67] 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5): 1050-1061. Zhang Liangpei, Shen Huanfeng. Progress and Future of Remote Sensing Data Fusion[J]. Journal of Remote Sensing, 2016, 20(5): 1050-1061.
[68] Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207-2218.
[69] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611. Feng Chanying, Wang Zihao, Zheng Chengyang. An Albedo Downscaling Method Based on Stratified Linear Regression[J]. Remote Sensing Technology and Application, 2019, 34(3): 602-611.
[70] Zhu X L, Cai F Y, Tian J Q, et al. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions[J]. Remote Sensing, 2018, 10(4): 527.
[71] Li J, Li Y F, He L, et al. Spatio-Temporal Fusion for Remote Sensing Data: An Overview and New Benchmark[J].Science China Information Sciences, 2020, 63(4): 140301.
[72] Zhukov B, Oertel D, Lanzl F, et al. Unmixing-Based Multisensor Multiresolution Image Fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1212-1226.
[73] Gevaert C M, García-Haro F J. A Comparison of STARFM and an Unmixing-Based Algorithm for Landsat and MODIS Data Fusion[J]. Remote Sensing of Environment, 2015, 156: 34-44.
[74] 张春森, 李辉. 顾及混合像元分解的遥感图像光谱模拟[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1052-1056. Zhang Chunsen, Li Hui. The Remote Sensing Image Spectrum Simulation with Mixed Pixel[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1052-1056.
[75] Zhu X L, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
[76] Huang B, Song H H. Spatiotemporal Reflectance Fusion via Sparse Representation[J].IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3707-3716.
[77] Song H H, Liu Q S, Wang G J, et al. Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 821-829.
[78] Settle J J, Drake N A. Linear Mixing and the Estimation of Ground Cover Proportions[J]. International Journal of Remote Sensing, 1993, 14(6): 1159-1177.
[79] Wang Q M, Peng K D, Tang Y J, et al. Blocks-Removed Spatial Unmixing for Downscaling MODIS Images[J]. Remote Sensing of Environment, 2021, 256: 112325.
[80] Cheng Q, Liu H Q, Shen H F, et al. A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4476-4488.
[81] Wu P H, Shen H F, Zhang L P, et al. Integrated Fusion of Multi-scale Polar-Orbiting and Geostationary Satellite Observations for the Mapping of High Spatial and Temporal Resolution Land Surface Temperature[J]. Remote Sensing of Environment, 2015, 156: 169-181.
[82] Wu B, Huang B, Zhang L P. An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6791-6803.
[83] Liu X, Deng C W, Wang S G, et al. Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 2039-2043.
[84] Ke Y H, Im J, Park S, et al. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches[J]. Remote Sensing, 2016, 8(3): 215.
[85] Tan Z Y, Di L P, Zhang M D, et al. An Enhanced Deep Convolutional Model for Spatiotemporal Image Fusion[J]. Remote Sensing, 2019, 11(24): 2898.
[86] Chen J, Wang L Z, Feng R Y, et al. CycleGAN-STF: Spatiotemporal Fusion via CycleGAN-Based Image Generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5851-5865.
[87] Tan Z Y, Gao M L, Li X H, et al. A Flexible Reference-Insensitive Spatiotemporal Fusion Model for Remote Sensing Images Using Conditional Generative Adversarial Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5601413.
[88] Wu P H, Shen H F, Ai T H, et al. Land-Surface Temperature Retrieval at High Spatial and Temporal Resolutions Based on Multi-sensor Fusion[J]. International Journal of Digital Earth, 2013, 6(sup1): 113-133.
[89] Weng Q H, Fu P, Gao F. Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data[J]. Remote Sensing of Environment, 2014, 145: 55-67.
[90] 魏然, 单杰. 城市地表温度影像时空融合方法研究[J]. 武汉大学学报(信息科学版), 2018, 43(3): 428-435. Wei Ran, Shan Jie. Spatial and Temporal Fusion for Urban Land Surface Temperature Image Mapping[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 428-435.
[91] Jiang H T, Shen H F, Li X H, et al. Extending the SMAP 9-km Soil Moisture Product Using a Spatio-Temporal Fusion Model[J]. Remote Sensing of Environment, 2019, 231: 111224.
[92] Xu C Y, Qu J, Hao X J, et al. Downscaling of Surface Soil Moisture Retrieval by Combining MODIS/Landsat and in Situ Measurements[J]. Remote Sensing, 2018, 10(2): 210.
[93] 肖窈, 曾超, 沈焕锋. 结合参量统计与时空融合的土壤水分降尺度方法[J]. 遥感技术与应用, 2021, 36(5): 1033-1043. Xiao Yao, Zeng Chao, Shen Huanfeng. Soil Moisture Downscaling Method Combining Parameter Statistics and Spatio-Temporal Fusion[J]. Remote Sensing Technology and Application, 2021, 36(5): 1033-1043.
[94] Li X Y, Long D. An Improvement in Accuracy and Spatiotemporal Continuity of the MODIS Precipitable Water Vapor Product Based on a Data Fusion Approach[J]. Remote Sensing of Environment, 2020, 248: 111966.
[95] Cammalleri C, Anderson M C, Gao F, et al. A Data Fusion Approach for Mapping Daily Evapotranspiration at Field Scale[J]. Water Resources Research, 2013, 49(8): 4672-4686.
[96] 柳文杰, 曾永年, 张猛. 融合时间序列环境卫星数据与物候特征的水稻种植区提取[J]. 遥感学报, 2018, 22(3): 381-391. Liu Wenjie, Zeng Yongnian, Zhang Meng. Mapping Rice Paddy Distribution by Using Time Series HJ Blend Data and Phenological Parameters[J]. Journal of Remote Sensing, 2018, 22(3): 381-391.
[97] Liao C H, Wang J F, Pritchard I, et al. A Spatio-Temporal Data Fusion Model for Generating NDVI Time Series in Heterogeneous Regions[J]. Remote Sensing, 2017, 9(11): 1125.
[98] 万华伟, 王锦地, 肖志强, 等. 融合MODIS与ASTER数据生成高空间分辨率时间序列LAI方法研究[J]. 北京师范大学学报(自然科学版), 2007, 43(3): 303-308. Wan Huawei, Wang Jindi, Xiao Zhiqiang, et al. Generating the High Spatial and Temporal Resolution LAI by Fusing MODIS and ASTER[J].Journal of Beijing Normal University(Natural Science), 2007, 43(3): 303-308.
[99] Houborg R, McCabe M F, Gao F. A Spatio-Temporal Enhancement Method for Medium Resolution LAI (STEM-LAI)[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 47: 15-29.
[100] Bai L L, Long D, Yan L. Estimation of Surface Soil Moisture with Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land[J]. Water Resources Research, 2019, 55(2): 1105-1128.
[101] 李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173. Li Xin, Huang Chunlin, Che Tao, et al. Progress and Prospect of Land Surface Data Assimilation System in China[J]. Progress in Natural Science, 2007, 17(2): 163-173.
[102] Kaheil Y H, Gill M K, McKee M, et al. Downscaling and Assimilation of Surface Soil Moisture Using Ground Truth Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1375-1384.
[103] Nagler T, Rott H, Malcher P, et al. Assimilation of Meteorological and Remote Sensing Data for Snowmelt Runoff Forecasting[J]. Remote Sensing of Environment, 2008, 112(4): 1408-1420.
[104] Boussetta S, Koike T, Yang K, et al. Development of a Coupled Land-Atmosphere Satellite Data Assimilation System for Improved Local Atmospheric Simulations[J]. Remote Sensing of Environment, 2008, 112(3): 720-734.
[105] Verhoest N E C,Berg M J,Martens B,al et.Copula-Based Downscaling of Coarse-Scale Soil Moisture Observations with Implicit Bias Correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3507-3521.
[106] Sahoo A K, Lannoy G J M, Reichle R H, et al. Assimilation and Downscaling of Satellite Observed Soil Moisture over the Little River Experimental Watershed in Georgia, USA[J]. Advances in Water Resources, 2013, 52: 19-33.
[107] Lievens H, Tomer S K, Al Bitar A, et al. SMOS Soil Moisture Assimilation for Improved Hydrologic Simulation in the Murray Darling Basin, Australia[J]. Remote Sensing of Environment, 2015, 168: 146-162.
[108] Jin H A, Li A N, Yin G F, et al. A Multiscale Assimilation Approach to Improve Fine-Resolution Leaf Area Index Dynamics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8153-8168.
[109] Reichle R H, Entekhabi D, McLaughlin D B. Downscaling of Radio Brightness Measurements for Soil Moisture Estimation: A Four-Dimensional Variational Data Assimilation Approach[J]. Water Resources Research, 2001, 37(9): 2353-2364.
[110] Ines A V M, Droogers P. Inverse Modelling in Estimating Soil Hydraulic Functions: A Genetic Algorithm Approach[J]. Hydrology and Earth System Sciences, 2002, 6(1): 49-66.
[111] Shin Y, Mohanty B P. Development of a Deterministic Downscaling Algorithm for Remote Sensing Soil Moisture Footprint Using Soil and Vegetation Classifications[J]. Water Resources Research, 2013, 49(10): 6208-6228.
[112] Reichstein M, Camps-Valls G, Stevens B, et al. Deep Learning and Process Understanding for Data-Driven Earth System Science[J]. Nature, 2019, 566: 195-204.
[113] Liu X M, Wang M H. Deriving VIIRS High-Spatial Resolution Water Property Data over Coastal and Inland Waters Using Deep Convolutional Neural Network[J]. Remote Sensing, 2021, 13(10): 1944.
[114] Liu X M, Wang M H. Super-Resolution of VIIRS-Measured Ocean Color Products Using Deep Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 114-127.
[115] Ducournau A, Fablet R. Deep Learning for Ocean Remote Sensing: An Application of Convolutional Neural Networks for Super-Resolution on Satellite-Derived SST Data[C]//The 9th IAPR Workshop on Pattern Recogniton in Remote Sensing, Cancun, Mexico, 2016.
[116] Dong C, Loy C C, He K M, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[117] Yu Z Y, Yang K, Luo Y, et al. Research on the Lake Surface Water Temperature Downscaling Based on Deep Learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5550-5558.
[118] Wang H Y, Juang J C. Retrieval of Ocean Wind Speed Using Super-Resolution Delay-Doppler Maps[J]. Remote Sensing, 2020, 12(6): 916.
[119] Ping B, Meng Y S, Xue C J, et al. Can the Structure Similarity of Training Patches Affect the Sea Surface Temperature Deep Learning Super-Resolution?[J]. Remote Sensing, 2021, 13(18): 3568.
[120] Ping B, Su F Z, Han X X, et al. Applications of Deep Learning-Based Super-Resolution for Sea Surface Temperature Reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 887-896.
[121] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]// The 27th International Conference on Neural Information Processing Systems-Volume 2, Montreal, Canada, 2014.
[122] Lambhate D, Subramani D N. Super-Resolution of Sea Surface Temperature Satellite Images[C]//Global Oceans, CoastGulf,Biloxi, USA, 2020.
[123] Leinonen J, Nerini D, Berne A. Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields with a Generative Adversarial Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7211-7223.
[124] Jing Y H, Lin L P, Li X H, et al. An Attention Mechanism Based Convolutional Network for Satellite Precipitation Downscaling over China[J]. Journal of Hydrology, 2022, 613: 128388.
[125] Jing Y H, Lin L P, Li X H, et al. Cascaded Downscaling‑Calibration Networks for Satellite Precipitation Estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1506105.
[126] Chen W J, Huang C L, Yang Z L. More Severe Drought Detected by the Assimilation of Brightness Temperature and Terrestrial Water Storage Anomalies in Texas During 2010—2013[J]. Journal of Hydrology, 2021, 603: 126802.
[127] Stoffelen A. Toward the True Near-Surface Wind Speed: Error Modeling and Calibration Using Triple Collocation[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7755-7766.
[128] 许剑辉, 舒红. 基于Triple-Collocation的地面观测与卫星遥感数据融合的雪深反演[J]. 武汉大学学报(信息科学版), 2015, 40(4): 469-473. Xu Jianhui, Shu Hong. The Triple-Collocation-Based Fusion of In‐Situ and Satellite Remote Sensing Data for Snow Depth Retrieval[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 469-473.
[129] Lü A F, Zhang Z L, Zhu H C. A Neural-Network Based Spatial Resolution Downscaling Method for Soil Moisture: Case Study of Qinghai Province[J]. Remote Sensing, 2021, 13(8): 1583.
[130] Chantry M, Christensen H, Dueben P, et al. Opportunities and Challenges for Machine Learning in Weather and Climate Modelling: Hard, Medium and Soft AI[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2194): 20200083.
[131] Yoon J H, Ruby Leung L, Correia J. Comparison of Dynamically and Statistically Downscaled Seasonal Climate Forecasts for the Cold Season over the United States[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D21): D21109.
[132] DuchÊne F, Van S B, Caluwaerts S, al et. A Statistical‑Dynamical Methodology to Downscale Regional Climate Projections to Urban Scale[J]. Journal of Applied Meteorology and Climatology, 2020, 59(6): 1109-1123.
-
期刊类型引用(8)
1. 张莹,任战利,兰华平,祁凯,邢光远,夏岩. 关中盆地新近系蓝田-灞河组热储层物性及渗流特征研究. 地质通报. 2024(05): 712-725 . 百度学术
2. 吴陈冰洁,罗璐,高楠安,汪新伟,崔梓贤. 关中盆地西安凹陷新近系砂岩热储特征研究. 现代地质. 2024(06): 1571-1584 . 百度学术
3. 张欢,陈应涛,陶威,陈涛,余文鑫,艾卉卉. 不同拉伸方式和速度下的伸展构造砂箱物理模拟实验研究. 西北地质. 2023(02): 327-336 . 百度学术
4. 颜复康,田镇,杨志强,杨兵,梁沛. 厄瓜多尔俯冲区震间闭锁与粘弹性变形研究. 大地测量与地球动力学. 2023(10): 1080-1085 . 百度学术
5. 张莹,任战利,邢光远,祁凯,夏岩. 渭河盆地新近系热储层特征. 地质通报. 2023(11): 1993-2005 . 百度学术
6. 徐斌,张艳. 地下水化学类型分区的GIS空间分析模型. 武汉大学学报(信息科学版). 2019(06): 866-874 . 百度学术
7. 闫俊义,吕睿,赵涛,王莹,白若冰,古云鹤. 关中盆地地壳应力场特征分析. 山西地震. 2019(03): 39-41 . 百度学术
8. 白相东,关成尧,张艳,袁四化,刘晓燕. 渭河盆地断层系统运动学体制分解与探讨. 防灾科技学院学报. 2018(03): 8-16 . 百度学术
其他类型引用(10)