基于样本优化策略的滑坡易发性评价

吴宏阳, 周超, 梁鑫, 王悦, 袁鹏程, 吴立星

吴宏阳, 周超, 梁鑫, 王悦, 袁鹏程, 吴立星. 基于样本优化策略的滑坡易发性评价[J]. 武汉大学学报 ( 信息科学版), 2024, 49(8): 1492-1502. DOI: 10.13203/j.whugis20220527
引用本文: 吴宏阳, 周超, 梁鑫, 王悦, 袁鹏程, 吴立星. 基于样本优化策略的滑坡易发性评价[J]. 武汉大学学报 ( 信息科学版), 2024, 49(8): 1492-1502. DOI: 10.13203/j.whugis20220527
WU Hongyang, ZHOU Chao, LIANG Xin, WANG Yue, YUAN Pengcheng, WU Lixing. Evaluation of Landslide Susceptibility Based on Sample Optimization Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1492-1502. DOI: 10.13203/j.whugis20220527
Citation: WU Hongyang, ZHOU Chao, LIANG Xin, WANG Yue, YUAN Pengcheng, WU Lixing. Evaluation of Landslide Susceptibility Based on Sample Optimization Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1492-1502. DOI: 10.13203/j.whugis20220527

基于样本优化策略的滑坡易发性评价

基金项目: 

国家自然科学基金 42371094

国家自然科学基金 41907253

详细信息
    作者简介:

    吴宏阳,硕士,主要从事地质灾害风险评价与系统开发。wuhongyangpower@163.com

    通讯作者:

    周超,博士,副教授。zhouchao@cug.edu.cn

Evaluation of Landslide Susceptibility Based on Sample Optimization Strategy

  • 摘要:

    准确的易发性评价结果能够对滑坡带来的危险进行精准防控。样本优化是滑坡易发性评价的重要方法,可有效解决不平衡样本产生的决策边界偏移问题,提升滑坡易发性评价精度。以中国重庆市万州区东南区域为例,选取地层、土地利用、高程等10个影响因子构建滑坡易发性评价指标体系,应用频率比方法定量分析滑坡与指标之间的关系,在此基础上分别利用深度神经网络模型(deep neural networks, DNN)、过采样-深度神经网络模型(synthetic minority oversampling technique-DNN, SMOTE-DNN)、混合采样-深度神经网络耦合模型(one-class support vector machine-SMOTE-DNN, OS-DNN)、混合采样-深度神经网络-K均值聚类耦合模型(OS-DNN-K-means)进行滑坡易发性评价。结果表明,距道路距离、土地利用、地层是研究区滑坡发育的主要控制因子。精度评价结果发现OS-DNN-K-means(95.61%)和OS-DNN(91.16%)相较于模型SMOTE-DNN(87.97%)和DNN(81.40%)更能有效提高滑坡预测精度。通过混合采样和半监督分类进行样本优化能够有效解决研究区样本不平衡问题,为滑坡灾害空间预测提供新技术支撑。

    Abstract:
    Objectives 

    Accurate susceptibility evaluation results can accurately prevent and control the dangers caused by landslides. Sample optimization is an important method for landslide susceptibility evaluation, which can effectively solve the problem of decision boundary offset generated by unbalanced samples and improve the accuracy of landslide susceptibility evaluation.

    Methods 

    Taking the southeast area of Wanzhou District of Chongqing, China as an example, ten influencing factors such as strata, land use and elevation were selected to construct a landslide susceptibility evaluation index system, and the relationship between landslide and the indices was quantitatively analyzed by frequency ratio method, and on this basis, deep neural network model (DNN), synthetic minority oversampling technique-DNN model (SMOTE-DNN), one-class support vector machine-DNN coupling model (OS-DNN), and OS-DNN-K-means clustering coupling model (OS-DNN-K-means) were used to evaluate landslide susceptibility.

    Results 

    The results show that the distance from the road, land use and strata are the main control factors for landslide development in the study area. The accuracy evaluation results show that OS-DNN-K-means (95.61%) and OS-DNN (91.16%) could improve the landslide prediction accuracy more effectively compared with SMOTE-DNN (87.97%) and DNN (81.40%).

    Conclusions 

    Sample optimization through mixed sampling and semi-supervised classification can effectively solve the problem of sample imbalance in the study area, and provide new technical support for spatial prediction of landslide disasters.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220527

  • 图  1   技术路线流程图

    Figure  1.   Flowchart of the Proposed Method

    图  2   OCSVM模型

    Figure  2.   OCSVM Model

    图  3   DNN模型

    Figure  3.   DNN Model

    图  4   DNN-K-Means模型

    Figure  4.   DNN-K-Means Model

    图  5   研究区位置及滑坡分布

    Figure  5.   Distribution of Landslides

    图  6   研究区易发性评价指标图

    Figure  6.   Landslide Susceptibility Factors of the Study Area

    图  7   纯化滑坡分布

    Figure  7.   Purification Landslide Distribution

    图  8   参数与预测精度关系曲线

    Figure  8.   Parameters and Prediction Accuracy Relationship Curves

    图  9   滑坡易发性分级图

    Figure  9.   Classification Maps of Landslide Susceptibility

    图  10   模型ROC曲线图

    Figure  10.   ROC Curves of the Model

    表  1   实验数据来源

    Table  1   Data Information of This Study

    类型比例尺或精度来源
    Landsat影像30 m地理空间数据云
    地形数据30 m地理空间数据云
    地质图1∶50 000万州区自然资源管理局提供
    土地利用数据30 mEULUC-China数据集
    倾角30 m野外实测插值
    倾向30 m野外实测插值
    下载: 导出CSV

    表  2   指标相关性

    Table  2   Correlation of Indicator Factors

    指标土地利用距道路距离斜坡结构NDVI地层斜坡形态TWI高程坡向坡度
    土地利用1-0.020.010.14-0.05-0.03-0.080.070.010.18
    距道路距离-0.0210-0.040.13000.10.07-0.06
    斜坡结构0.0101-0.160.050-0.01-0.010.360
    NDVI0.14-0.04-0.161-0.12-0.04-0.090.03-0.150.15
    地层-0.050.130.05-0.121-0.0100.360.020
    斜坡形态-0.0300-0.04-0.0110.28-0.080-0.01
    TWI-0.080-0.01-0.09-00.281-0.13-0.01-0.09
    高程0.070.1-0.010.030.36-0.08-0.13100.09
    坡向0.010.070.36-0.150.020-0.01010.03
    坡度0.18-0.0600.150-0.01-0.090.090.031
    下载: 导出CSV

    表  3   各因素状态频率比表

    Table  3   The Weighted Information Values of Each Factor State

    指标分级频率比指标分级频率比
    坡度[0°, 9°)0.79NDVI[0, 0.15)0.00
    [9°, 24°)1.23[0.15, 0.225)0.65
    [24°, 36°)0.92[0.225, 0.375)1.04
    [36°, 75°]0.44[0.375, 1]1.00
    坡向[0°, 90°)-0.69地层沙溪庙、新田沟0.71
    [90°, 198°)0.41自流井、珍珠冲2.43
    [198°, 252°)0.60巴东、嘉陵江0.04
    [252°, 360°]-0.59须家河、雷口坡2.32
    高程[251, 500) m0.36斜坡结构顺向飘倾坡1.34
    [500, 800) m1.56顺斜坡1.45
    [800, 1 000) m0.80横向坡1.06
    [1 000, 1 250] m0.00逆斜坡、逆向坡0.55
    TWI[1, 5)1.01距道路距离[0, 300) m0.15
    [5, 8)0.80[300, 900) m0.14
    [8, 10)1.14[900, 1 150) m1.56
    [10, 15)0.99[1 150, 20 000] m1.26
    [15, 28]0.34内向凹形坡(V/V)、内向凸形坡(V/X)1.34
    土地利用建筑用地2.63斜坡形态内向直线坡(V/GE)1.45
    林地0.79外向凹形坡(X/V)、外向凸形坡(X/X)、外向直线坡(X/GE)1.06
    裸地、农业用地0.33直线凹形坡(GR/V)、直线凸形坡(GR/X)、直线形直坡(GR/GE)0.55
    下载: 导出CSV

    表  4   各易发性等级中滑坡数量占比

    Table  4   Proportion of the Number of Landslides in Each Susceptibility Grade

    模型易发性等级发生滑坡栅格数b栅格总数c占总滑坡比例d/%占总栅格比例e/%滑坡比率(d/e)
    DNN290166 2650.460.830.56
    6111 6660.100.061.67
    9512 1060.150.062.50
    极高18310 5640.290.055.52
    SMOTE-DNN163166 4400.260.830.31
    10011 4580.160.062.78
    11811 8550.190.063.17
    极高24810 8480.390.057.29
    OS-DNN85165 9540.140.830.16
    7212 0480.110.061.91
    13811 2790.220.063.90
    极高33411 3200.530.069.41
    OS-DNN-K-means25165 4650.040.820.05
    3712 3400.060.060.96
    9311 2250.150.062.64
    极高47411 5710.750.0613.06
    下载: 导出CSV
  • [1]

    Zhou C,Cao Y,Yin K,et al.Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China[J].Remote Sensing,2020,12: 3385.

    [2]

    Zhou Chao,Yin Kunlong,Cao Ying,et al. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China[J].Engineering Geology,2022,301:106590.

    [3] 梁鑫, 殷坤龙, 陈丽霞, 等. 库水位波动及降雨作用下巫峡干井子滑坡流-固耦合特征及稳定性分析[J]. 中国地质灾害与防治学报, 2019, 30(1): 30-40.

    Liang Xin, Yin Kunlong, Chen Lixia, et al. Flow-solid Coupling Characteristics and Stability Analysis of Ganjingzi Landslide in the Wu Gorge Under Reservoir Water Level Fluctuation and Rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 30-40.

    [4] 邱海军. 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究: 以宁强县为例[D]. 西安: 西北大学, 2012.

    Qiu Haijun.Study on the Regional Landslide Characteristic Analysis and Hazard Assessment: A Case Study of Ningqiang County [D].Xi’an: Northwest University, 2012.

    [5]

    Bragagnolo L,Silva R,Grzybowski J.Artificial Neural Network Ensembles Applied to the Mapping of Landslide Susceptibility[J].Catena,2020,184: 104240.

    [6]

    Bai S B, Wang J, Lü G N, et al. GIS-based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China[J]. Geomorphology, 2010, 115(1): 23-31.

    [7]

    Long J J, Liu Y, Li C D, et al. A Novel Model for Regional Susceptibility Mapping of Rainfall-Reservoir Induced Landslides in Jurassic Slide-prone Strata of Western Hubei Province, Three Gorges Reservoir Area[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(7): 1403-1426.

    [8] 陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(S1): 2859-2870.

    Chen Fei, Cai Chao, Li Xiaoshuang, et al. Evaluation of Landslide Susceptibility Based on Information Quantity and Neural Network Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2859-2870.

    [9]

    Ghorbanzadeh O, Shahabi H, Crivellari A, et al. Landslide Detection Using Deep Learning and Object-based Image Analysis[J]. Landslides, 2022, 19(4): 929-939.

    [10]

    Shahabi H, Rahimzad M, Tavakkoli Piralilou S, et al. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery[J]. Remote sensing, 2021, 13(22): 4698.

    [11]

    Dou J, Yunus A P, Merghadi A, et al. Different Sampling Strategies for Predicting Landslide Susceptibilities Are Deemed less Consequential with Deep Learning[J]. The Science of the Total Environment, 2020, 720: 137320.

    [12]

    Yao J, Qin S, Qiao S, et al. Assessment of Landslide Susceptibility Combining Deep Learning with Semi-Supervised Learning in Jiaohe County, Jilin Province, China[J]. Applied Sciences, 2020, 10(16): 5640.

    [13]

    Chawla N V, Japkowicz N, Kotcz A. Editorial: Special Issue on Learning from Imbalanced Data Sets[J]. ACM SIGKDD Explorations Newsletter: Special Issue on Learning from Imbalanced Datasets, 2007, 6(1): 1-6.

    [14] 王博文, 王景升, 吴恩重. 面向不平衡数据集的SMOTENC-XGBoost驾驶人交通安全评估模型[J]. 科学技术与工程, 2023, 23(2): 831-837.

    Wang Bowen, Wang Jingsheng, Wu Enzhong. SMOTENC-XGBoost Driver Traffic Safety Assessment Model for Unbalanced Dataset[J]. Science Technology and Engineering, 2023, 23(2): 831-837.

    [15]

    Liu X Y, Wu J X, Zhou Z H. Exploratory Undersampling for Class-Imbalance Learning[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 2009, 39(2): 539-550.

    [16]

    Tsai C F, Lin W C, Hu Y H, et al. Under-Sampling Class Imbalanced Datasets by Combining Clustering Analysis and Instance Selection[J]. Inf Sci, 2019, 477: 47-54.

    [17] 黄发明, 陈彬, 毛达雄, 等. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性[J]. 地球科学, 2023, 48(5): 1696-1710.

    Huang Faming, Chen Bin, Mao Daxiong, et al. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-screening Deep Learning Model[J]. Earth Science, 2023, 48(5): 1696-1710.

    [18] 刘稀文, 段隆振, 段文影. 基于FCM的簇内欠采样算法[J]. 南昌大学学报(理科版), 2021, 45(5): 437-444.

    Liu Xiwen, Duan Longzhen, Duan Wenying. Fuzzy C-means Clustering Based Undersampling in Clusters[J]. Journal of Nanchang University (Natural Science), 2021, 45(5): 437-444.

    [19]

    Seiffert C, Khoshgoftaar T M, Van Hulse J, et al. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2010, 40(1): 185-197.

    [20] 盛铭, 陈凌珊, 汪俊杰, 等. 基于单分类支持向量机的CAN总线异常检测方法[J]. 汽车技术, 2020(5): 21-25.

    Sheng Ming, Chen Lingshan, Wang Junjie, et al. Abnormity Detection Method for In-vehicle CAN Bus Based on One-class SVM[J]. Automobile Technology, 2020(5): 21-25.

    [21]

    Wang Y M, Wu X L, Chen Z J, et al. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 368.

    [22] 黎旭,陈家兑,吴永明,等.基于改进SMOTE的制造过程不平衡数据分类策略[J].计算机工程与应用, 2022, 58(16): 284-291

    Li Xu, Chen Jiadui, Wu Yongming, et al. Classification Strategy of Imbalanced Data in Manufacturing Process Based on Improved SMOTE[J/].Computer Engineering and Application, 2022, 58(16): 284-291.

    [23] 姜万冬, 席江波, 李振洪, 等. 模拟困难样本的Mask R-CNN滑坡分割识别[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1931-1942.

    Jiang Wandong,Xi Jiangbo,Li Zhenhong,et al. Landslide Detection and Segmentation Using Mask R-CNN with Simulated Hard Samples[J].Geomatics and Information Science of Wuhan University, 2023, 48(12): 1931-1942.

    [24] 廖一迁,岳显昌,吴雄斌,等.基于AIS和Canopy+K-means算法的高频雷达阵列幅相校准[J].现代雷达,2023,45(9):9-15.

    Liao Yiqian, Yue Xianchang, Wu Xiongbin, et al. Amplitude Calibration of High-Frequency Radar Arrays Based on AIS and Canopy+K-means Algorithm[J].Modern Radar,2023,45(9):9-15.

    [25]

    Xiao T, Segoni S, Liang X, et al. Generating Soil Thickness Maps by Means of Geomorphological-empirical Approach and Random Forest Algorithm in Wanzhou County, Three Gorges Reservoir[J]. Geoscience Frontiers, 2023,14(2),101514.

    [26] 郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312.

    Guo Zizheng, Yin Kunlong, Fu Sheng, et al. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model[J]. Earth Science, 2019, 44(12): 4299-4312.

    [27] 武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1223-1232.

    Wu Xueling, Yang Jingyu, Niu Ruiqing. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232.

    [28] 王佳佳, 殷坤龙, 肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价: 以三峡库区万州区为例[J]. 岩石力学与工程学报, 2014, 33(4): 797-808.

    Wang Jiajia, Yin Kunlong, Xiao Lili. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808.

    [29] 刘渊博, 牛瑞卿, 于宪煜, 等. 旋转森林模型在滑坡易发性评价中的应用研究[J]. 武汉大学学报(信息科学版), 2018, 43(6): 959-964.

    Liu Yuanbo, Niu Ruiqing, Yu Xianyu, et al. Application of the Rotation Forest Model in Landslide Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 959-964.

    [30] 郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2): 287-300.

    Guo Zizheng, Yin Kunlong, Huang Faming, et al. Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300.

    [31] 周超, 殷坤龙, 向章波, 等. 基于GIS的淳安县滑坡易发性定量评价[J]. 安全与环境工程, 2015, 22(1): 45-50.

    Zhou Chao,Yin Kunlong,Xiang Zhangbo,et al. Quantitative Evaluation of the Landslide Susceptibility in Chun’an County Based on GIS[J]. Safety and Environmental Engineering,2015,22(1):45-50.

    [32] 王赞, 闫明, 刘爽, 等. 深度神经网络测试研究综述[J]. 软件学报, 2020, 31(5): 1255-1275.

    Wang Zan, Yan Ming, Liu Shuang, et al. Survey on Testing of Deep Neural Networks[J]. Journal of Software, 2020, 31(5): 1255-1275.

    [33] 祝钧桃, 姚光乐, 张葛祥, 等. 深度神经网络的小样本学习综述[J]. 计算机工程与应用, 2021, 57(7): 22-33.

    Zhu Juntao, Yao Guangle, Zhang Gexiang, et al. Survey of few Shot Learning of Deep Neural Network[J]. Computer Engineering and Applications, 2021, 57(7): 22-33.

    [34]

    Zhou C, Yin K L, Cao Y, et al. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China[J]. Computers & Geosciences, 2018, 112: 23-37.

  • 期刊类型引用(4)

    1. 朱杰,郑加柱,陈红华,杨静,胡平昌,陆敏燕. 结合POI数据的南京市商业中心识别与集聚特征研究. 现代测绘. 2022(06): 34-39 . 百度学术
    2. 金澄,安晓亚,陈占龙,马啸川. 矢量居民地多边形多级图划分聚类方法. 武汉大学学报(信息科学版). 2021(01): 19-29 . 百度学术
    3. 张铭龙,何贞铭. 基于因子分析法的城市商业中心抽取研究. 地理空间信息. 2021(08): 58-60+64+5 . 百度学术
    4. 李卫东,张铭龙,段金龙. 基于POI数据的南京市空间格局定量研究. 世界地理研究. 2020(02): 317-326 . 百度学术

    其他类型引用(3)

图(10)  /  表(4)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  16
  • PDF下载量:  68
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-12-23
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-08-04

目录

    /

    返回文章
    返回