GNSS精密时频接收机时钟调控模型与参数设计方法

GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method

  • 摘要: 实时精密单点定位(real time precise point positioning, RT-PPP)技术可实现亚纳秒级、天稳定度达到1×10-14量级的全球导航卫星系统(global navigation satellite system, GNSS)单向授时。时钟调控直接影响输出时频信号的稳定度性能,但调控参数不合适时将破坏振荡器的短期稳定度。面向振荡器短期稳定度和RT-PPP长期稳定度最优组合,构建了RT-PPP时频接收机的锁相环时钟调控模型,分析了调控系统噪声,提出了一种二阶锁相环调控参数设计方法。利用RT-PPP时频接收机对所提出的调控模型和参数设计方法进行了实测验证,结果表明,利用所设计的时钟调控模型和参数,RT-PPP时频接收机的频率稳定度可达秒稳4.344 4×10-12,天稳1.102 9×10-14,在时间间隔小于300 s时与铷钟自由振荡稳定度基本一致,大于300 s时与RT-PPP稳定度基本一致,能很好地组合振荡器短期稳定度和RT-PPP长期稳定度优势。

     

    Abstract:
      Objectives  Real time precise point positioning(RT-PPP) technology can realize one-way timing with sub-nanosecond precision and daily stability of 1×10-14 level. Clock steering affects the stability of the receiver's output time-frequency signal, however, inappropriate clock steering parameters can degrade the short-term stability of the receiver's oscillator.
      Methods  To combine the short-term stability of the oscillator and the long-term stability of the RT-PPP, we propose a phase-locked loop clock steering model for the RT-PPP time-frequency receiver. The noises of the system are analyzed. And the parameter design method of the second-order phase-locked loop is proposed. Experiments were carried out with the clock steering model and designed parameters used in the RT-PPP time-frequency receiver.
      Results  Experimental results show that the frequency stability of the RT-PPP time-frequency receiver is 4.344 4×10-12 at 1 s, 1.102 9×10-14 at 1 d, the frequency stability of the time intervals shorter than 300 s can get close to the free-running Rubidium clock, the frequency stability of the time intervals longer than 300 s can get close to the RT-PPP.
      Conclusions  The proposed clock steering model and parameter design method can well realize the combination of the oscillator's short-term stability and the RT-PPP's long-term stability.

     

/

返回文章
返回