GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method
-
摘要: 实时精密单点定位(real time precise point positioning, RT-PPP)技术可实现亚纳秒级、天稳定度达到1×10-14量级的全球导航卫星系统(global navigation satellite system, GNSS)单向授时。时钟调控直接影响输出时频信号的稳定度性能,但调控参数不合适时将破坏振荡器的短期稳定度。面向振荡器短期稳定度和RT-PPP长期稳定度最优组合,构建了RT-PPP时频接收机的锁相环时钟调控模型,分析了调控系统噪声,提出了一种二阶锁相环调控参数设计方法。利用RT-PPP时频接收机对所提出的调控模型和参数设计方法进行了实测验证,结果表明,利用所设计的时钟调控模型和参数,RT-PPP时频接收机的频率稳定度可达秒稳4.344 4×10-12,天稳1.102 9×10-14,在时间间隔小于300 s时与铷钟自由振荡稳定度基本一致,大于300 s时与RT-PPP稳定度基本一致,能很好地组合振荡器短期稳定度和RT-PPP长期稳定度优势。Abstract:Objectives Real time precise point positioning(RT-PPP) technology can realize one-way timing with sub-nanosecond precision and daily stability of 1×10-14 level. Clock steering affects the stability of the receiver's output time-frequency signal, however, inappropriate clock steering parameters can degrade the short-term stability of the receiver's oscillator.Methods To combine the short-term stability of the oscillator and the long-term stability of the RT-PPP, we propose a phase-locked loop clock steering model for the RT-PPP time-frequency receiver. The noises of the system are analyzed. And the parameter design method of the second-order phase-locked loop is proposed. Experiments were carried out with the clock steering model and designed parameters used in the RT-PPP time-frequency receiver.Results Experimental results show that the frequency stability of the RT-PPP time-frequency receiver is 4.344 4×10-12 at 1 s, 1.102 9×10-14 at 1 d, the frequency stability of the time intervals shorter than 300 s can get close to the free-running Rubidium clock, the frequency stability of the time intervals longer than 300 s can get close to the RT-PPP.Conclusions The proposed clock steering model and parameter design method can well realize the combination of the oscillator's short-term stability and the RT-PPP's long-term stability.
-
Keywords:
- RT-PPP /
- phase-locked loop /
- noise analysis /
- frequency stability /
- parameter design
-
-
-
[1] 宋伟伟, 赵新科, 楼益栋, 等. 北斗三号PPP-B2b服务性能评估[J]. 武汉大学学报(信息科学版), 2023, 48(3): 408-415. doi: 10.13203/j.whugis20200686 Song Weiwei, Zhao Xinke, Lou Yidong, et al. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415 doi: 10.13203/j.whugis20200686
[2] 周要宗, 楼益栋, 张卫星, 等. 新一代实时对流层映射函数精度及PPP性能评估[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1881-1888. doi: 10.13203/j.whugis20210238 Zhou Yaozong, Lou Yidong, Zhang Weixing, et al. On the Accuracy and PPP Performance Evaluation of the Latest Generation of Real Time Tropospheric Mapping Function[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1881-1888 doi: 10.13203/j.whugis20210238
[3] 谭俊雄. 基于PPP的高精度GNSS授时接收机技术[D]. 武汉: 武汉大学, 2019. Tan Junxiong. Research on GNSS High Precision Timing Receiver Based on PPP Technology[D]. Wuhan: Wuhan University, 2019
[4] Lei Y, Tan J X, Guo W F, et al. Time-Domain Evaluation Method for Clock Frequency Stability Based on Precise Point Positioning[J]. IEEE Access, 2019, 7: 132413-132422. doi: 10.1109/ACCESS.2019.2940515
[5] Guo W F, Song W W, Niu X J, et al. Foundation and Performance Evaluation of Real-Time GNSS High-Precision One-Way Timing System[J]. GPS Solutions, 2019, 23(1): 23. doi: 10.1007/s10291-018-0811-1
[6] Rønningen O P, Danielson M. A Novel PPP Disciplined Oscillator[C]//Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum, Orlando, USA, 2019.
[7] Matsakis D. The Effects of Proportional Steering Strategies on the Behavior of Controlled Clocks[J]. Metrologia, 2019, 56(2): 025007. doi: 10.1088/1681-7575/ab0614
[8] Wu Y W, Gong H, Zhu X W, et al. A DPLL Method Applied to Clock Steering[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1331-1342. doi: 10.1109/TIM.2016.2526699
[9] Koppang P, Leland R. Linear Quadratic Stochastic Control of Atomic Hydrogen Masers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(3): 517-522. doi: 10.1109/58.764838
[10] Lombardi M A. The Use of GPS Disciplined Oscillators as Primary Frequency Standards for Calibration and Metrology Laboratories[J]. NCSLI Measure, 2008, 3(3): 56-65. doi: 10.1080/19315775.2008.11721437
[11] Lombardi M A. A NIST Disciplined Oscillator: Delivering UTC(NIST) to the Calibration Laboratory[J]. NCSLI Measure, 2010, 5(4): 46-54. doi: 10.1080/19315775.2010.11721537
[12] Franklin G F, David Powell J, Emami-Naeini A. Feedback Control of Dynamic Systems[M]. NJ: Prentice Hall, 2002.
[13] Farina M, Galleani L, Tavella P, et al. A Control Theory Approach to Clock Steering Techniques[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2257-2270. doi: 10.1109/TUFFC.2010.1687
[14] Gardner F M. Phaselock Techniques[M]. NJ: Wiley-Interscience, 2005.
[15] Mishagin K G, Lysenko V A, Medvedev S Y. A Practical Approach to Optimal Control Problem for Atomic Clocks[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(5): 1080-1087. doi: 10.1109/TUFFC.2019.2957650
[16] 乔广欣, 张慧君, 李博, 等. GNSS驯服芯片级原子钟方法研究[J]. 导航定位与授时, 2022, 9(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202202019.htm Qiao Guangxin, Zhang Huijun, Li Bo, et al. Research on the Method of GNSS-Disciplined Chip-Scale Atomic Clock[J]. Navigation Positioning and Timing, 2022, 9(2): 153-159 https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202202019.htm
[17] 赵齐乐, 戴志强, 王广兴, 等. 利用非差观测量估计北斗卫星实时精密钟差[J]. 武汉大学学报(信息科学版), 2016, 41(5): 686-691. doi: 10.13203/j.whugis20150314 Zhao Qile, Dai Zhiqiang, Wang Guangxing, et al. Real-Time Precise BDS Clock Estimation with the Undifferenced Observation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 686-691 doi: 10.13203/j.whugis20150314
[18] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009. Xie Gang. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009
[19] Yang X H, Gu S F, Gong X P, et al. Regional BDS Satellite Clock Estimation with Triple-Frequency Ambiguity Resolution Based on Undifferenced Observation[J]. GPS Solutions, 2019, 23(2): 33. doi: 10.1007/s10291-019-0828-0
[20] Guo W F, Zuo H M, Mao F Y, et al. On the Satellite Clock Datum Stability of RT-PPP Product and Its Application in One-Way Timing and Time Synchronization[J]. Journal of Geodesy, 2022, 96(8): 52. doi: 10.1007/s00190-022-01638-5
[21] 伍贻威, 杨斌, 肖胜红, 等. 原子钟模型和频率稳定度分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1226-1232. doi: 10.13203/j.whugis20180058 Wu Yiwei, Yang Bin, Xiao Shenghong, et al. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232 doi: 10.13203/j.whugis20180058
[22] Riley W J. Handbook of Frequency Stability Analysis[M]. Boulder: National Institute of Standards and Technology, 2008.
[23] Kroupa V. Noise Properties of PLL Systems[J]. IEEE Transactions on Communications, 1982, 30(10): 2244-2252.
[24] Hajimiri A. Noise in Phase-Locked Loops[C]//Southwest Symposium on Mixed-Signal Design, Austin, USA, 2002.