GNSS精密时频接收机时钟调控模型与参数设计方法

郭文飞, 朱萌萌, 辜声峰, 左鸿铭, 陈金鑫

郭文飞, 朱萌萌, 辜声峰, 左鸿铭, 陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
引用本文: 郭文飞, 朱萌萌, 辜声峰, 左鸿铭, 陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
Citation: GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458

GNSS精密时频接收机时钟调控模型与参数设计方法

基金项目: 

国家重点研发计划 2021YFB3900703

国家自然科学基金 42227802

国家自然科学基金 41974038

详细信息
    作者简介:

    郭文飞,博士,教授,主要从事GNSS高精度授时、抗干扰接收机和GNSS-R研究。wf.guo@whu.edu.cn

    通讯作者:

    辜声峰,博士,教授。gsf@whu.edu.cn

  • 中图分类号: P228

GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method

  • 摘要: 实时精密单点定位(real time precise point positioning, RT-PPP)技术可实现亚纳秒级、天稳定度达到1×10-14量级的全球导航卫星系统(global navigation satellite system, GNSS)单向授时。时钟调控直接影响输出时频信号的稳定度性能,但调控参数不合适时将破坏振荡器的短期稳定度。面向振荡器短期稳定度和RT-PPP长期稳定度最优组合,构建了RT-PPP时频接收机的锁相环时钟调控模型,分析了调控系统噪声,提出了一种二阶锁相环调控参数设计方法。利用RT-PPP时频接收机对所提出的调控模型和参数设计方法进行了实测验证,结果表明,利用所设计的时钟调控模型和参数,RT-PPP时频接收机的频率稳定度可达秒稳4.344 4×10-12,天稳1.102 9×10-14,在时间间隔小于300 s时与铷钟自由振荡稳定度基本一致,大于300 s时与RT-PPP稳定度基本一致,能很好地组合振荡器短期稳定度和RT-PPP长期稳定度优势。
    Abstract:
      Objectives  Real time precise point positioning(RT-PPP) technology can realize one-way timing with sub-nanosecond precision and daily stability of 1×10-14 level. Clock steering affects the stability of the receiver's output time-frequency signal, however, inappropriate clock steering parameters can degrade the short-term stability of the receiver's oscillator.
      Methods  To combine the short-term stability of the oscillator and the long-term stability of the RT-PPP, we propose a phase-locked loop clock steering model for the RT-PPP time-frequency receiver. The noises of the system are analyzed. And the parameter design method of the second-order phase-locked loop is proposed. Experiments were carried out with the clock steering model and designed parameters used in the RT-PPP time-frequency receiver.
      Results  Experimental results show that the frequency stability of the RT-PPP time-frequency receiver is 4.344 4×10-12 at 1 s, 1.102 9×10-14 at 1 d, the frequency stability of the time intervals shorter than 300 s can get close to the free-running Rubidium clock, the frequency stability of the time intervals longer than 300 s can get close to the RT-PPP.
      Conclusions  The proposed clock steering model and parameter design method can well realize the combination of the oscillator's short-term stability and the RT-PPP's long-term stability.
  • 图  1   RT-PPP时频接收机系统框图

    Figure  1.   Structure of RT-PPP Time-Frequency Receiver

    图  2   RT-PPP时频接收机锁相环结构框图

    Figure  2.   Phase-Locked Loop Structure of RT-PPP Time-Frequency Receiver

    图  3   不同阻尼系数系统传递函数和误差传递函数幅频响应

    Figure  3.   Amplitude Response of System Transfer Function and System Error Transfer Function with Various Damping Ratios

    图  4   实测实验平台

    Figure  4.   Actual Measurement Experimental Platform

    图  5   实测铷钟自由振荡和RT-PPP频率抖动

    Figure  5.   Measured Frequency Fluctuations of Free-Running Rubidium Clock and RT-PPP

    图  6   实测铷钟自由振荡和RT-PPP频率稳定度

    Figure  6.   Measured Frequency Stability of Free-Running Rubidium Clock and RT-PPP

    图  7   实测铷钟自由振荡和RT-PPP频率抖动功率谱密度

    Figure  7.   Measured Power Spectral Density of Frequency Fluctuations of Free-Running Rubidium Clock and RT-PPP

    图  8   仿真不同带宽下RT-PPP时频接收机频率稳定度结果

    Figure  8.   Simulated Frequency Stability of RT-PPP Time-Frequency Receiver with Various Bandwidths

    图  9   仿真不同阻尼系数下RT-PPP时频接收机频率稳定度结果

    Figure  9.   Simulated Frequency Stability of RT-PPP Time-Frequency Receiver with Various Damping Ratios

    图  10   实测RT-PPP时频接收机时间频率抖动

    Figure  10.   Measured Time Fluctuations and Frequency Fluctuations of RT-PPP Time-Frequency Receiver

    图  11   实测RT-PPP时频接收机频率稳定度

    Figure  11.   Measured Frequency Stability of RT-PPP Time-Frequency Receiver

  • [1] 宋伟伟, 赵新科, 楼益栋, 等. 北斗三号PPP-B2b服务性能评估[J]. 武汉大学学报(信息科学版), 2023, 48(3): 408-415. doi: 10.13203/j.whugis20200686

    Song Weiwei, Zhao Xinke, Lou Yidong, et al. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415 doi: 10.13203/j.whugis20200686

    [2] 周要宗, 楼益栋, 张卫星, 等. 新一代实时对流层映射函数精度及PPP性能评估[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1881-1888. doi: 10.13203/j.whugis20210238

    Zhou Yaozong, Lou Yidong, Zhang Weixing, et al. On the Accuracy and PPP Performance Evaluation of the Latest Generation of Real Time Tropospheric Mapping Function[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1881-1888 doi: 10.13203/j.whugis20210238

    [3] 谭俊雄. 基于PPP的高精度GNSS授时接收机技术[D]. 武汉: 武汉大学, 2019.

    Tan Junxiong. Research on GNSS High Precision Timing Receiver Based on PPP Technology[D]. Wuhan: Wuhan University, 2019

    [4]

    Lei Y, Tan J X, Guo W F, et al. Time-Domain Evaluation Method for Clock Frequency Stability Based on Precise Point Positioning[J]. IEEE Access, 2019, 7: 132413-132422. doi: 10.1109/ACCESS.2019.2940515

    [5]

    Guo W F, Song W W, Niu X J, et al. Foundation and Performance Evaluation of Real-Time GNSS High-Precision One-Way Timing System[J]. GPS Solutions, 2019, 23(1): 23. doi: 10.1007/s10291-018-0811-1

    [6]

    Rønningen O P, Danielson M. A Novel PPP Disciplined Oscillator[C]//Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum, Orlando, USA, 2019.

    [7]

    Matsakis D. The Effects of Proportional Steering Strategies on the Behavior of Controlled Clocks[J]. Metrologia, 2019, 56(2): 025007. doi: 10.1088/1681-7575/ab0614

    [8]

    Wu Y W, Gong H, Zhu X W, et al. A DPLL Method Applied to Clock Steering[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1331-1342. doi: 10.1109/TIM.2016.2526699

    [9]

    Koppang P, Leland R. Linear Quadratic Stochastic Control of Atomic Hydrogen Masers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(3): 517-522. doi: 10.1109/58.764838

    [10]

    Lombardi M A. The Use of GPS Disciplined Oscillators as Primary Frequency Standards for Calibration and Metrology Laboratories[J]. NCSLI Measure, 2008, 3(3): 56-65. doi: 10.1080/19315775.2008.11721437

    [11]

    Lombardi M A. A NIST Disciplined Oscillator: Delivering UTC(NIST) to the Calibration Laboratory[J]. NCSLI Measure, 2010, 5(4): 46-54. doi: 10.1080/19315775.2010.11721537

    [12]

    Franklin G F, David Powell J, Emami-Naeini A. Feedback Control of Dynamic Systems[M]. NJ: Prentice Hall, 2002.

    [13]

    Farina M, Galleani L, Tavella P, et al. A Control Theory Approach to Clock Steering Techniques[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2257-2270. doi: 10.1109/TUFFC.2010.1687

    [14]

    Gardner F M. Phaselock Techniques[M]. NJ: Wiley-Interscience, 2005.

    [15]

    Mishagin K G, Lysenko V A, Medvedev S Y. A Practical Approach to Optimal Control Problem for Atomic Clocks[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(5): 1080-1087. doi: 10.1109/TUFFC.2019.2957650

    [16] 乔广欣, 张慧君, 李博, 等. GNSS驯服芯片级原子钟方法研究[J]. 导航定位与授时, 2022, 9(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202202019.htm

    Qiao Guangxin, Zhang Huijun, Li Bo, et al. Research on the Method of GNSS-Disciplined Chip-Scale Atomic Clock[J]. Navigation Positioning and Timing, 2022, 9(2): 153-159 https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202202019.htm

    [17] 赵齐乐, 戴志强, 王广兴, 等. 利用非差观测量估计北斗卫星实时精密钟差[J]. 武汉大学学报(信息科学版), 2016, 41(5): 686-691. doi: 10.13203/j.whugis20150314

    Zhao Qile, Dai Zhiqiang, Wang Guangxing, et al. Real-Time Precise BDS Clock Estimation with the Undifferenced Observation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 686-691 doi: 10.13203/j.whugis20150314

    [18] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.

    Xie Gang. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009

    [19]

    Yang X H, Gu S F, Gong X P, et al. Regional BDS Satellite Clock Estimation with Triple-Frequency Ambiguity Resolution Based on Undifferenced Observation[J]. GPS Solutions, 2019, 23(2): 33. doi: 10.1007/s10291-019-0828-0

    [20]

    Guo W F, Zuo H M, Mao F Y, et al. On the Satellite Clock Datum Stability of RT-PPP Product and Its Application in One-Way Timing and Time Synchronization[J]. Journal of Geodesy, 2022, 96(8): 52. doi: 10.1007/s00190-022-01638-5

    [21] 伍贻威, 杨斌, 肖胜红, 等. 原子钟模型和频率稳定度分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1226-1232. doi: 10.13203/j.whugis20180058

    Wu Yiwei, Yang Bin, Xiao Shenghong, et al. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232 doi: 10.13203/j.whugis20180058

    [22]

    Riley W J. Handbook of Frequency Stability Analysis[M]. Boulder: National Institute of Standards and Technology, 2008.

    [23]

    Kroupa V. Noise Properties of PLL Systems[J]. IEEE Transactions on Communications, 1982, 30(10): 2244-2252.

    [24]

    Hajimiri A. Noise in Phase-Locked Loops[C]//Southwest Symposium on Mixed-Signal Design, Austin, USA, 2002.

图(11)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  141
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 网络出版日期:  2023-05-08
  • 发布日期:  2023-07-04

目录

    /

    返回文章
    返回