星载GPS/Galileo数据Sentinel-6A卫星运动学精密定轨研究

金彪, 陈姗姗, 李敏, 李子潇, 原晋栩

金彪, 陈姗姗, 李敏, 李子潇, 原晋栩. 星载GPS/Galileo数据Sentinel-6A卫星运动学精密定轨研究[J]. 武汉大学学报 ( 信息科学版), 2025, 50(1): 42-52. DOI: 10.13203/j.whugis20220455
引用本文: 金彪, 陈姗姗, 李敏, 李子潇, 原晋栩. 星载GPS/Galileo数据Sentinel-6A卫星运动学精密定轨研究[J]. 武汉大学学报 ( 信息科学版), 2025, 50(1): 42-52. DOI: 10.13203/j.whugis20220455
JIN Biao, CHEN Shanshan, LI Min, LI Zixiao, YUAN Jinxu. Kinematic Precise Orbit Determination of Sentinel-6A Satellite with Spaceborne GPS/Galileo Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 42-52. DOI: 10.13203/j.whugis20220455
Citation: JIN Biao, CHEN Shanshan, LI Min, LI Zixiao, YUAN Jinxu. Kinematic Precise Orbit Determination of Sentinel-6A Satellite with Spaceborne GPS/Galileo Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 42-52. DOI: 10.13203/j.whugis20220455

星载GPS/Galileo数据Sentinel-6A卫星运动学精密定轨研究

基金项目: 

国家自然科学基金 42304045

详细信息
    作者简介:

    金彪,博士,主要从事卫星精密定轨和GNSS完好性研究。jinb@spacestar.com.cn

    通讯作者:

    李敏,博士,教授。limin@whu.edu.cn

Kinematic Precise Orbit Determination of Sentinel-6A Satellite with Spaceborne GPS/Galileo Observations

  • 摘要:

    哨兵(Sentinel)-6A 海洋测高卫星搭载了GPS/Galileo双模接收机,为研究基于全球导航卫星系统多星座的低轨卫星精密定轨提供了契机。固定载波相位模糊度可提升低轨卫星的定轨精度,利用在轨实测数据研究GPS/Galileo双系统组合以及模糊度固定对低轨卫星运动学定轨精度的影响。分别采用欧洲定轨中心(Center for Orbit Determination in Europe, CODE)、法国国家空间研究中心(Centre National d’Etudes Spatiales, CNES)、德国地学研究中心(German Research Centre for Geosciences, GFZ)和中国武汉大学 (Wuhan University, WHU)发布的观测值偏差及对应的精密星历和钟差产品开展单接收机模糊度固定。结果表明:GPS/Galileo双系统组合可明显改善定轨几何构型。双系统组合浮点解轨道三维精度优于30 mm,相对于GPS单系统提升超过20%。模糊度固定显著提升了运动学定轨精度,组合固定解轨道精度优于20 mm,相对于GPS提升30%。基于CODE、CNES和GFZ产品的GPS和Galileo单系统模糊度固定率分别优于93%和95%,WHU产品的Galileo固定率则偏低。利用卫星激光测距(satellite laser ranging,SLR)观测数据对运动学定轨结果进行检核,单系统固定解轨道SLR残差均方根误差(root mean square, RMS)为13~15 mm,双系统组合固定解RMS则达到12~14 mm,提升超过10%。

    Abstract:
    Objectives 

    The Sentinel-6A spacecraft is equipped with a GPS/Galileo dual-constellation global navigation satellite system (GNSS) receiver which provides an opportunity to investigate the precise orbit determination (POD) accuracy of low Earth orbit (LEO) satellites based on multi-GNSS. Ambiguity resolution plays an important role in GNSS-based precise positioning and orbit determination. The single receiver ambiguity resolution is explored and the GPS/Galileo measurements are combined to further improve the kinematic orbit determination accuracy.

    Methods 

    Observation specific bias (OSB) product is employed to calibrate the satellite dependent phase delay, and single difference (SD) observation between GNSS satellites is applied to remove the phase delay of receiver. Combined with the related GNSS precise orbit and clock products, the wide lane and narrow lane ambiguities are fixed to integers. Then the SD ionosphere free (IF) ambiguities are recovered with the fixed ambiguities and are taken as pseudo observations to constrain the undifferenced IF ambiguities. The effect of GPS/Galileo combination and ambiguity resolution on kinematic orbit determination is analyzed with Sentinel-6A onboard data. GNSS products provided by the Center for Orbit Determination in Europe (CODE), Centre National d’Etudes Spatiales (CNES), German Research Centre for Geosciences (GFZ) and Wuhan University (WHU) are used for single receiver ambiguity resolution and POD. Different kinematic orbits including GPS‑only, Galileo‑only and GPS/Galileo combined solutions are generated. The reduced dynamic orbits with ambiguity resolution are also calculated to assess the accuracy of kinematic orbits.

    Results 

    Results show that the visible satellites and position dilution of precision are significantly improved in dual-GNSS solution. The three dimensional (3D) accuracy of the dual-constellation kinematic orbit with float ambiguity achieves 30 mm and shows an improvement of 20% when comparing with the GPS-only result. Fixing the ambiguity to integer significantly improves the POD accuracy. The 3D accuracy of the GPS/Galileo ambiguity fixed orbit is 20 mm, which is 30% better than that of the GPS-only result. With the products of CODE, CNES and GFZ, more than 93% of the GPS and 95% of the Galileo ambiguities are successfully fixed and is further improved to 97% in the case of dual-GNSS solution. The ambiguity fixing rate shows degraded performance when using the WHU product. Independent satellite laser ranging (SLR) observations are used to validate the kinematic orbits. The root mean square (RMS) of SLR residuals of GPS-only solution with fixed ambiguity is 13-15 mm while it is 12-14 mm for the orbits derived with dual-constellation observations and an average improvement of 10% is achieved by introducing the Galileo data.

    Conclusions 

    Fixing the ambiguity to integers improves the accuracy and stability of POD results. Compared with the GPS-only solution, GPS/Galileo combined solution improves the ambiguity fixing rate which then leads to an improvement of kinematic orbit determination accuracy.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220455
  • 图  1   GPS C1W/C2W和Galileo C1C/C5Q伪距多径

    Figure  1.   Code Multipath of GPS C1W/C2W and Galileo C1C/C5Q Observations

    图  2   PDOP值全球分布

    Figure  2.   Global Distribution of PDOP

    图  3   运动学固定解定轨GPS和Galileo伪距和载波残差RMS分布

    Figure  3.   Code and Carrier Phase Residual RMS of GPS and Galileo Derived from Kinematic Orbit Determination with Ambiguity Resolution

    图  4   使用CODE产品不同定轨模式的宽巷和窄巷模糊度固定率

    Figure  4.   Wide Lane and Narrow Lane Ambiguity Fixing Rates of Different Orbit Determination Solutions Using CODE Product

    图  5   基于各分析中心产品的GPS运动学定轨宽巷和窄巷模糊度固定率

    Figure  5.   GPS Wide Lane and Narrow Lane Ambiguity Fixing Rates for Kinematic Orbit Determination Using Products of Different Analysis Centers

    图  6   基于各分析中心产品的Galileo运动学定轨宽巷和窄巷模糊度固定率

    Figure  6.   Galileo Wide Lane and Narrow Lane Ambiguity Fixing Rates for Kinematic Orbit Determination Using Products of Different Analysis Centers

    图  7   使用CODE和WHU产品时Galileo运动学定轨模糊度总数、固定的宽巷模糊度数和固定的窄巷与宽巷模糊度数的比值

    Figure  7.   Galileo Total Ambiguity, Fixed Wide-Lane Ambiguity and Ratio of Fixed Narrow-Lane to Wide-Lane Ambiguity Using CODE and WHU Products

    图  8   2021年年积日第175天运动学浮点解轨道与参考轨道的差异

    Figure  8.   Orbit Differences Between Kinematic Orbits with Float Ambiguity and Reference Orbits on Day of Year 175 in 2021

    图  9   使用CODE产品时运动学浮点解轨道与参考轨道的差异

    Figure  9.   Orbit Differences Between Kinematic Orbits with Float Ambiguity and Reference Orbits Using CODE Product

    图  10   使用CODE产品时运动学固定解轨道与参考轨道的差异

    Figure  10.   Orbit Differences Between Kinematic Orbits with Fixed Ambiguity and Reference Orbits Using CODE Product

    图  11   基于各分析中心产品的运动学固定解轨道与参考轨道的三维差异

    Figure  11.   Orbit Differences Between Kinematic Orbits with Fixed Ambiguity and Reference Orbits Using Products of Different Analysis Centers

    图  12   使用CODE产品时运动学浮点解轨道SLR残差

    Figure  12.   SLR Residuals of Kinematic Orbits with Float Ambiguity Using CODE Product

    图  13   基于各分析中心产品的固定解轨道SLR残差RMS

    Figure  13.   SLR Residuals RMS of Different Orbits with Fixed Ambiguity Using Products of Different Analysis Centers

    表  1   Sentinel-6A接收机输出的GPS和Galileo观测值类型

    Table  1   GPS and Galileo Observation Types Supported by Sentinel-6A Receiver

    GNSS卫星伪距载波
    GPS IIRC1C、C1W、C2WL1C、L2W
    GPS IIR-M、IIF、ⅢC1C、C2LL1C、L2L
    GalileoC1C、C5QL1C、L5Q
    下载: 导出CSV

    表  2   星载GNSS天线PCO、卫星质心和SLR反射器在星固系下的坐标/mm

    Table  2   Positions of Onboard GNSS Antenna, SLR Retroreflector and Center of Mass in Satellite Reference Frame/mm

    设备名称XYZ
    GNSS天线参考点+2 474.8+0.1-1 080.3
    GNSS天线GPS PCO00+75.0
    GNSS天线Galileo PCO00+93.0
    SLR 反射棱镜+1 624.8-400.6+664.8
    卫星质心+1 533.0-7.0+37.0
    下载: 导出CSV

    表  3   Sentinel-6A卫星运动学定轨策略

    Table  3   Sentinel-6A Precise Orbit Determination Strategy Based on Kinematic Method

    模型参数说明
    使用数据和产品观测数据非差无电离层组合
    定轨弧长/h24
    采样间隔/s10
    截止高度角/(°)3
    GNSS轨道和钟差CODE, CNES, GFZ, WHU MGEX产品
    GNSS相位偏差CODE, CNES, GFZ, WHU OSB产品
    GNSS天线igs14.atx
    接收机天线改正
    相位缠绕改正
    相对论改正IERS 2010
    参数估计卫星位置随机游走,过程噪声5 m/s,每历元估计
    接收机钟差随机游走,过程噪声30 m/s,每历元估计
    模糊度常数,每跟踪弧段估计1个
    下载: 导出CSV

    表  4   使用CODE产品时运动学定轨结果与参考轨道差异统计值/mm

    Table  4   Statistics of Orbit Differences Between Kinematic Orbits and Reference Orbits Using CODE Product/mm

    定轨模式切向法向径向三维
    GPS浮点解-3.1±22.5-0.1±18.9-1.1±24.538.4
    Galileo浮点解-2.7±30.5-3.7±31.53.1±36.257.1
    GPS/Galileo浮点解-2.9±16.2-2.2±15.11.5±17.728.6
    GPS固定解0.4±9.5-1.0±10.4-1.5±20.324.8
    Galileo固定解-0.8±9.2-0.7±12.01.7±23.828.3
    GPS/Galileo固定解-0.3±6.0-0.9±7.81.2±13.116.5
    下载: 导出CSV
  • [1]

    BERTIGER W I, BAR-SEVER Y E, Christensen E J, et al. GPS Precise Tracking of TOPEX/POSEIDON: Results and Implications[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24449-24464.

    [2]

    TAPLEY B D, RIES J C, DAVIS G W, et al. Precision Orbit Determination for TOPEX/POSEIDON[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24383-24404.

    [3]

    KANG Z G, TAPLEY B, BETTADPUR S, et al. Precise Orbit Determination for the GRACE Mission Using Only GPS Data[J]. Journal of Geodesy, 2006, 80(6): 322-331.

    [4]

    VAN DEN IJSSEL J, VISSER P, PATIÑO RODRIGUEZ E. Champ Precise Orbit Determination Using GPS Data[J]. Advances in Space Research, 2003, 31(8): 1889-1895.

    [5] 赵齐乐, 刘经南, 葛茂荣, 等. CHAMP卫星cm级精密定轨[J]. 武汉大学学报(信息科学版), 2006, 31(10): 879-882.

    ZHAO Qile, LIU Jingnan, GE Maorong, et al. Precision Orbit Determination of CHAMP Satellite with cm-Level Accuracy[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 879-882.

    [6] 郭靖, 赵齐乐, 李敏, 等. 利用星载GPS观测数据确定海洋2A卫星cm级精密轨道[J]. 武汉大学学报(信息科学版), 2013, 38(1): 52-55.

    GUO Jing, ZHAO Qile, LI Min, et al. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55. ()

    [7]

    LI M, LI W W, SHI C, et al. Precise Orbit Determination of the Fengyun-3C Satellite Using Onboard GPS and BDS Observations[J]. Journal of Geodesy, 2017, 91(11): 1313-1327.

    [8]

    LI X X, ZHANG K K, MENG X G, et al. Precise Orbit Determination for the FY-3C Satellite Using Onboard BDS and GPS Observations from 2013, 2015, and 2017[J]. Engineering, 2020, 6(8): 904-912.

    [9]

    JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data[J]. Advances in Space Research, 2007, 39(10): 1612-1619.

    [10]

    HACKEL S, MONTENBRUCK O, STEIGENBERGER P, et al. Model Improvements and Validation of TerraSAR-X Precise Orbit Determination[J].Journal of Geodesy, 2017, 91(5): 547-562.

    [11]

    MONTENBRUCK O, HACKEL S, JÄGGI A. Precise Orbit Determination of the Sentinel-3A Altimetry Satellite Using Ambiguity-Fixed GPS Carrier Phase Observations[J]. Journal of Geodesy, 2018, 92(7): 711-726.

    [12]

    MONTENBRUCK O, HACKEL S, VAN DEN IJSSEL J, et al. Reduced Dynamic and Kinematic Precise Orbit Determination for the Swarm Mission from 4 Years of GPS Tracking[J]. GPS Solutions, 2018, 22(3): 79.

    [13]

    MONTENBRUCK O, HACKEL S, WERMUTH M, et al. Sentinel-6A Precise Orbit Determination Using a Combined GPS/Galileo Receiver[J]. Journal of Geodesy, 2021, 95(9): 109.

    [14]

    JIN B, LI Y Q, JIANG K C, et al. GRACE-FO Antenna Phase Center Modeling and Precise Orbit Determination with Single Receiver Ambiguity Resolution[J]. Remote Sensing, 2021, 13(21): 4204.

    [15]

    GE M, GENDT G,ROTHACHER M,et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399.

    [16] 李浩东, 赵齐乐, 陶钧, 等. 北斗三号卫星FCB估计及其模糊度固定[J]. 武汉大学学报(信息科学版), 2022, 47(9): 1439-1446.

    LI Haodong, ZHAO Qile, TAO Jun, et al. FCB Estimation and Ambiguity Resolution of BDS-3[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1439-1446.

    [17]

    LAURICHESSE D, MERCIER F, BERTHIAS J P,et al.Integer Ambiguity Resolution on Undifferen‑ced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149.

    [18]

    COLLINS P, BISNATH S, LAHAYE F,et al.Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135.

    [19]

    BERTIGER W, DESAI S D, HAINES B, et al. Single Receiver Phase Ambiguity Resolution with GPS Data[J]. Journal of Geodesy, 2010, 84(5): 327-337.

    [20] 张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1009-1013.

    ZHANG Xiaohong, LI Pan, ZUO Xiang.Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013.

    [21]

    LOYER S,PEROSANZ F,MERCIER F,et al.Zero-Difference GPS Ambiguity Resolution at CNES‑CLS IGS Analysis Center[J].Journal of Geo‑desy, 2012, 86(11): 991-1003.

    [22] 谭涵, 吴家齐. 星间单差模糊度固定的低轨卫星精密定轨精度分析[J]. 武汉大学学报(信息科学版), 2022, 47(9): 1460-1469.

    TAN Han, WU Jiaqi. Accuracy Assessment for LEO Precise Orbit Determination with Single-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1460-1469.

    [23]

    SCHARROO R, BONEKAMP H, PONSARD C, et al. Jason Continuity of Services: Continuing the Jason Altimeter Data Records as Copernicus Sentinel-6[J]. Ocean Science, 2016, 12(2): 471-479.

    [24]

    DONLON C J, CULLEN R, GIULICCHI L, et al. The Copernicus Sentinel-6 Mission: Enhanced Continuity of Satellite Sea Level Measurements from Space[J]. Remote Sensing of Environment, 2021, 258: 112395.

    [25]

    MONTENBRUCK O, KUNZI F, HAUSCHILD A. Performance Assessment of GNSS-Based Real-Time Navigation for the Sentinel-6 Spacecraft[J]. GPS Solutions, 2021, 26(1): 12.

    [26]

    SCHAER S, VILLIGER A, ARNOLD D, et al. The CODE Ambiguity-Fixed Clock and Phase Bias Analysis Products: Generation, Properties, and Performance[J]. Journal of Geodesy, 2021, 95(7): 81.

    [27]

    DENG Z, FRITSCHE M, UHLEMANN M, et al. Reprocessing of GFZ Multi-GNSS Product GBM[C]//IGS Workshop 2016, Sydney, Australia, 2016.

    [28]

    GENG J H, CHEN X Y, PAN Y X, et al. A Modified Phase Clock/Bias Model to Improve PPP Ambiguity Resolution at Wuhan University[J]. Journal of Geodesy, 2019, 93(10): 2053-2067.

    [29]

    BLEWITT G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research:Solid Earth,1989,94(B8):10187-10203.

    [30]

    MELBOURNE W. The Case for Ranging in GPS Based Geodetic Systems[C]//The First International Symposium on Precise Positioning with GPS, Rockville, Maryland, USA, 1985.

    [31]

    WÜBBENA G.Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements[C]//The First International Symposium on Precise Position with GPS, Rockville, Maryland, USA, 1985.

    [32]

    CULLEN R. Sentinel-6A POD Context[EB/OL].(2021-07-21)[2022-04-20]. ftp://ftp.ids-doris.org/pub/ids/satellites/Sentinel6A_PODcontext.pdf, 2021.

    [33]

    XIA Y W, LIU X, GUO J Y, et al. On GPS Data Quality of GRACE-FO and GRACE Satellites: Effects of Phase Center Variation and Satellite Attitude on Precise Orbit Determination[J]. Acta Geodaetica et Geophysica, 2021, 56(1): 93-111.

    [34]

    VACLAVOVIC P, DOUSA J. G-Nut/Anubis: Open-Source Tool for Multi-GNSS Data Monito‑ring with a Multipath Detection for New Signals, Frequencies and Constellations[C]//IAG Scientific Assembly, Postdam, Germany, 2016.

    [35]

    PROCHNIEWICZ D, GRZYMALA M. Analysis of the Impact of Multipath on Galileo System Measurements[J]. Remote Sensing, 2021, 13(12): 2295.

    [36]

    BOCK Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research, 1989, 94(B4): 3949-3966.

图(13)  /  表(4)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  114
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 网络出版日期:  2023-06-06
  • 刊出日期:  2025-01-04

目录

    /

    返回文章
    返回