四分量钻孔应变观测近地表应力应变状态的判定与分析

唐磊, 邱泽华, 李玉江, 李瑜, 樊俊屹

唐磊, 邱泽华, 李玉江, 李瑜, 樊俊屹. 四分量钻孔应变观测近地表应力应变状态的判定与分析[J]. 武汉大学学报 ( 信息科学版), 2025, 50(1): 63-73. DOI: 10.13203/j.whugis20220397
引用本文: 唐磊, 邱泽华, 李玉江, 李瑜, 樊俊屹. 四分量钻孔应变观测近地表应力应变状态的判定与分析[J]. 武汉大学学报 ( 信息科学版), 2025, 50(1): 63-73. DOI: 10.13203/j.whugis20220397
TANG Lei, QIU Zehua, LI Yujiang, LI Yu, FAN Junyi. Determination and Analysis of Near-Surface Stress-Strain State of 4-Component Borehole Strainmeter[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 63-73. DOI: 10.13203/j.whugis20220397
Citation: TANG Lei, QIU Zehua, LI Yujiang, LI Yu, FAN Junyi. Determination and Analysis of Near-Surface Stress-Strain State of 4-Component Borehole Strainmeter[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 63-73. DOI: 10.13203/j.whugis20220397

四分量钻孔应变观测近地表应力应变状态的判定与分析

基金项目: 

国家自然科学基金 41974018

详细信息
    作者简介:

    唐磊,硕士,高级工程师,主要从事地壳形变与地震预测研究。Tanglei06@seis.ac.cn

Determination and Analysis of Near-Surface Stress-Strain State of 4-Component Borehole Strainmeter

  • 摘要:

    四分量钻孔应变观测产出了丰富的近地表连续地壳应变变化资料,使用这些资料时需要正确解析。在四分量钻孔应变观测的力学换算方法基础上,提出了在张-压应力、张应力和压应力3种应力环境下利用四分量钻孔应变观测判定观测区域应力应变状态的方法。以中国青海省门源M 6.9地震为例,用此方法研究了震中附近区域的背景应力应变状态,结果表明应力应变集中区在近地表可能会出现应变拉张现象;分析了门源站主张应变方向的动态变化,初步确定震前5 d出现的主张应变方向变化速率增强现象为震前异常;对四分量钻孔应变记录的同震应变状态与基于弹性位错理论模拟的同震应力场变化特征进行了对比分析,结果表明实测结果与模拟结果吻合度较高。应用分析表明,所提出的判定钻孔观测区域应力应变状态的方法可行有效。

    Abstract:
    Objectives 

    Data on near-surface continuous crustal strain variation are produced in large quantities by the 4-component borehole strainmeter, but correct analysis is needed when using these data.

    Methods 

    Based on the mechanical conversion method of 4-component borehole strainmeter, we propose a method to determine the stress-strain state by using 4-component borehole strain observations under three stress environments: Tension-compression stress, tension stress, and compression stress.

    Results 

    Taking the M 6.9 Menyuan earthquake in Qinghai Province, China as an example, we investigate the background stress-strain state near the epicenter by the proposed method. The results show that the stress-strain concentration area may have strain tension near the surface. After analyzing the dynamic change of the strain direction of the Menyuan station, we suggest that the increasing rate of the strain direction change that occurred five days before the earthquake was an anomaly before the earthquake. Following the comparison between the coseismic strain state measured by the borehole strainmeter and the modeled results according to elastic dislocation theory, the results show that the observed results are in good agreement with the modeled results.

    Conclusions 

    The application analysis shows that the proposed method to determine the stress-strain state of borehole area is feasible and effective.

  • 经典平差模型和最小二乘估计理论[1]在大地测量等众多科学研究和工程领域中应用广泛,其中,高斯-马尔科夫模型(Gauss-Markov model, GMM)最为常用,而高斯-赫尔默特模型(GaussHelmert model, GHM)可视为经典平差模型的一般通用形式。在实际应用中,坐标转换、回归模型、数字地面模型和大地测量反演等平差模型的系数矩阵包含随机的观测误差,从而使得GMM扩展为随机系数矩阵的变量含误差(errors-invariables, EIV)模型[2]。文献[3]提出同时顾及观测向量和系数矩阵中随机误差的整体最小二乘(total least squares, TLS)估计算法。TLS的非线性特征导致其受制于计算机技术的发展,直至20世纪80年代,文献[4]将TLS引入数值分析领域并提出奇异值分解算法,TLS才开始广泛应用于各专业领域并取得丰富的研究成果。文献[2]中对TLS进行了改进和扩展;文献[5]从TLS的算法、统计特性和可靠性研究等方面综述了TLS方法的研究进展。当误差相关且精度不等时,采用加权整体最小二乘估计(weighted total least squares, WTLS)方法进行求解。文献[6]研究了基于高斯-牛顿迭代法的WTLS算法,该算法假设权矩阵为特殊情况,得到的解在形式上与最小二乘(least squares, LS)解相同;文献[7]研究了在任意权矩阵的一般情况下的WTLS算法;文献[8]研究了特殊结构下WTLS算法的迭代方法并将其应用于实际场景;文献[9-12]研究了附有等式和不等式约束情况下的WTLS算法;文献[13]研究了稳健WTLS算法。

    通过对EIV模型的形式进行变换,文献[14]提出部分EIV(partial EIV, PEIV)模型,提高了系数矩阵仅含部分随机量情况下的计算效率。文献[15]对PEIV模型进行线性化,推导了PEIV模型的LS算法。文献[16-17]从模型的一般性出发,将EIV模型扩展至通用EIV模型,将经典平差的GHM中观测向量的系数矩阵和参数向量的系数矩阵由固定矩阵推广为随机矩阵,涵括随机系数矩阵的各类情况,同时推导了通用EIV模型在任意权矩阵情况下的一般性WTLS算法。

    通用EIV模型的非线性使得该算法在估计量较多时计算量大。本文利用非线性平差原理,将通用EIV模型展开后的二阶项纳入平差方程的常数项,从而将其转化为GHM形式,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares, LTLS)算法。相较于WTLS算法,LTLS算法提高了通用EIV模型的计算效率,当参数向量初始值与最优值相差较大时,提升了迭代收敛速度。

    GHM的形式为:

    $$ \mathit{\boldsymbol{A}}\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{BX}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (1)

    式中,yvy分别为n×1维观测值向量和观测值改正数向量;Xu×1维参数向量;A为观测值向量对应的f×n维系数矩阵;B为参数向量对应的f×u维系数矩阵;wf×1维常数向量;在经典平差函数模型的定义中,AB均不含随机误差,为固定矩阵。

    当参数向量的系数矩阵B含随机误差时,GHM(式(1))扩展为经典EIV模型。当观测值向量的系数矩阵A和参数向量的系数矩阵B均含随机误差时,GHM(式(1))扩展为通用EIV平差模型[16]:

    $$ \left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}} $$ (2)

    式中,AVA分别为观测值向量对应的f×n维系数矩阵及其改正数矩阵;BVB分别为参数向量对应的f×u维系数矩阵及其改正数矩阵。由于ABy均为随机矩阵,则通用EIV的随机模型为:

    $$ \mathit{\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{A}})}\\ {{\mathop{\rm vec}\nolimits} (\mathit{\boldsymbol{B}})}\\ \mathit{\boldsymbol{y}} \end{array}} \right],\mathit{\boldsymbol{v}} = \left[ {\begin{array}{*{20}{c}} {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)}\\ {{\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{A}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{B}}}}\\ {{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (3)
    $$ \mathit{\boldsymbol{D}}(\mathit{\boldsymbol{L}}) = \delta _0^2{\mathit{\boldsymbol{P}}^{ - 1}} = \delta _0^2\mathit{\boldsymbol{Q}} = \delta _0^2\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{A}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{AB}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{Ay}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{BA}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{B}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{By}}}}}\\ {{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yA}}}}}&{{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{yB}}}}}&{{\mathit{\boldsymbol{Q}}_\mathit{\boldsymbol{y}}}} \end{array}} \right] $$ (4)

    式中,vec(.)表示将矩阵按列向量化;Lv分别为观测数据的k×1维观测值向量及其改正数向量,包括ABy中所有观测值及其改正数,其中k=fn+fu+n; PQD(L)分别为L的权矩阵、协因数矩阵和方差协方差矩阵;δ02为单位权方差。

    根据TLS准则,通用EIV平差模型的求解可转化为最优化估计问题[16]:

    $$ \left\{ {\begin{array}{*{20}{l}} {\min {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}}}\\ {s.t.{\rm{ }}\left( {\mathit{\boldsymbol{A}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right)\left( {\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \left( {\mathit{\boldsymbol{B}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right)\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}} = \mathit{\boldsymbol{0}}} \end{array}} \right. $$ (5)

    相应目标函数为:

    $$ \begin{array}{*{20}{c}} {\mathit{\Phi }(\mathit{\boldsymbol{r}},\mathit{\boldsymbol{\lambda }},\mathit{\boldsymbol{X}}) = {\mathit{\boldsymbol{v}}^{\rm{T}}}\mathit{\boldsymbol{Pv}} + 2{\mathit{\boldsymbol{\lambda }}^{\rm{T}}}\left( {\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + } \right.}\\ {\left. {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + \mathit{\boldsymbol{BX}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{X}} + \mathit{\boldsymbol{w}}} \right)} \end{array} $$ (6)

    将目标函数对估计量分别求偏导并令其等于0,得到非线性方程组:

    $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat X}}}} = 2\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (7)
    $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat v}}}} = 2\left( {\mathit{\boldsymbol{P\hat v}} + {{\mathit{\boldsymbol{\hat C}}}^{\rm{T}}}\mathit{\boldsymbol{\hat \lambda }}} \right) = \mathit{\boldsymbol{0}} $$ (8)
    $$ \frac{{\partial \mathit{\Phi }}}{{\partial \mathit{\boldsymbol{\hat \lambda }}}} = 2(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{\hat C\hat v}} + \mathit{\boldsymbol{w}}) = \mathit{\boldsymbol{0}} $$ (9)

    式中,$ {\boldsymbol{C}}=\left[{\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} \boldsymbol{X}^{\mathrm{T}} \otimes {\boldsymbol{I}}_{f} A+\boldsymbol{V}_{{\boldsymbol{A}}}\right] ; \hat{{\boldsymbol{v}}}, \hat{\boldsymbol{X}} $分别为观测值向量和参数向量的估计值。

    根据式(7)~式(9)可导出:

    $$ \mathit{\boldsymbol{\hat v}} = - \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{\hat C}}^{\rm{T}}}\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B\hat X}} + \mathit{\boldsymbol{w}}) $$ (10)
    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat X}} = - {{\left[ {\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + \mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}\mathit{\boldsymbol{B}}} \right]}^{ - 1}}\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}} + } \right.}\\ {\left. {\mathit{\boldsymbol{\hat V}}_\mathit{\boldsymbol{B}}^{\rm{T}}} \right)\mathit{\boldsymbol{\hat Q}}_\mathit{\boldsymbol{C}}^{ - 1}(\mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{w}})} \end{array} $$ (11)

    式中,$ \hat{\boldsymbol{Q}}_{C}=\hat{\boldsymbol{C}} \boldsymbol{Q} \hat{\boldsymbol{C}}^{\mathrm{T}} $。

    以式(2)的LS解作为初始值,根据式(10)和式(11)进行迭代计算可得通用EIV模型的WTLS最优解。

    通用EIV模型是非线性模型,观测值矩阵和系数矩阵均为随机量,WTLS算法的计算量随着待估量个数增多将迅速增加。将式(2)展开,利用非线性函数平差原理[18]将二阶项作为模型误差纳入方程的常数项,从而将通用EIV模型转化为线性的GHM,推导出通用EIV模型的LTLS算法。

    X=X0+x,将式(2)展开得:

    $$ \begin{array}{c} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}\mathit{\boldsymbol{y}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}{\mathit{\boldsymbol{X}}_0} + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right) + \mathit{\boldsymbol{Bx}} + (\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \\ \left. {\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}} \end{array} $$ (12)

    式(12)可表示为:

    $$ \begin{array}{*{20}{c}} {\left[ {\left( {{\mathit{\boldsymbol{y}}^{\rm{T}}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}} \right) + \left( {\mathit{\boldsymbol{X}}_0^{\rm{T}} \otimes {\mathit{\boldsymbol{I}}_\mathit{\boldsymbol{f}}}} \right){\mathop{\rm vec}\nolimits} \left( {{\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}} \right) + \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}}} \right] + }\\ {\mathit{\boldsymbol{Bx}} + \left( {\mathit{\boldsymbol{w}} + \mathit{\boldsymbol{Ay}} + \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{X}}_0} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{A}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{y}}} + {\mathit{\boldsymbol{V}}_\mathit{\boldsymbol{B}}}\mathit{\boldsymbol{x}}} \right) = \mathit{\boldsymbol{0}}} \end{array} $$ (13)

    则通用EIV模型的线性化形式为:

    $$ {\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}} + \mathit{\boldsymbol{Bx}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} = \mathit{\boldsymbol{0}} $$ (14)

    式中,$ {\boldsymbol{A}}_{{\boldsymbol{l}}}=\left[\begin{array}{llll} {\boldsymbol{y}}^{\mathrm{T}} \otimes {\boldsymbol{I_{f}}} & \boldsymbol{X}_{0}^{\mathrm{T}} & \otimes {\boldsymbol{I_{f}}} & {\boldsymbol{A}} \end{array}\right] ; \ {\boldsymbol{v_{l}}}= \left[\begin{array}{c} \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{A}}}\right) \\ \operatorname{vec}\left(\boldsymbol{V}_{{\boldsymbol{B}}}\right) \\ \boldsymbol{v}_{{\boldsymbol{y}}} \end{array}\right] ; \boldsymbol{w}_{{\boldsymbol{l}}}=\boldsymbol{w}+\boldsymbol{Ay} + {\boldsymbol{B}} \boldsymbol{X}_{0}+\boldsymbol{V}_{{\boldsymbol{A}}} \boldsymbol{v}_{{\boldsymbol{y}}}+\boldsymbol{V}_{{\boldsymbol{B}}} {\boldsymbol{x}}$为常数项,即将式(2)按泰勒展开略去的二阶项VAvy+VBx作为模型误差纳入常数项。

    由式(14)可知,线性化后的通用EIV模型与GHM形式一致,可使用最小二乘法得到观测值向量和参数向量:

    $$ \mathit{\boldsymbol{\hat x}} = - \mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{bb}}}^{ - 1}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}{\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}} $$ (15)
    $$ {{\mathit{\boldsymbol{\hat v}}}_\mathit{\boldsymbol{l}}} = - \mathit{\boldsymbol{Q}}{{\mathit{\boldsymbol{\hat A}}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{\hat N}}_{\mathit{\boldsymbol{aa}}}^{ - 1}\left( {\mathit{\boldsymbol{B\hat x}} + {\mathit{\boldsymbol{w}}_\mathit{\boldsymbol{l}}}} \right) $$ (16)

    式中,$ \boldsymbol{N}_{{\boldsymbol{a a}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{Q} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} ; \boldsymbol{N}_{{\boldsymbol{b b}}}= {\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{N}_{{\boldsymbol{a a}}}^{-1} {\boldsymbol{B}} $; Q为观测值向量的协因数矩阵。

    通用EIV模型的LTLS算法步骤如下:

    1)将实际模型表示为式(2),将观测数据代入得到ABy矩阵,并给出观测值数据的协因数阵Q,包括观测值向量Qy、观测值向量系数矩阵QA、参数向量系数矩阵QB

    2)计算通用EIV模型的LS解作为初始参数解:$ \hat{\boldsymbol{X}}^{0}=-\left({\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A }}\boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} {\boldsymbol{B}}\right)^{-1} {\boldsymbol{B}}^{\mathrm{T}}\left({\boldsymbol{A}} \boldsymbol{Q}_{{\boldsymbol{y}}} {\boldsymbol{A}}^{\mathrm{T}}\right)^{-1} · ({\boldsymbol{A y}}+{\boldsymbol{w}})$, 观测值向量改正数初始值取0。

    3)根据式(15)和式(16)进行迭代计算,每次迭代将上一次估计值作为初始值代入新的迭代过程,直至前后两次估计值之差小于设定阈值。

    GHM按泰勒级数展开仅包含常数项、一阶项(二阶及以上项全部为零),将二阶项纳入线性化后的常数项,该方法极大地减弱了线性化引起的模型误差。因此,在同样以LS解作为初值的情况下,GHM线性化的LTLS解与WTLS解的收敛性一致。此外,根据文献[19]中EIV模型LS解偏差的研究结果,在当前测量技术手段和观测精度条件下,以有偏的LS解作为初值,能够保证TLS迭代计算收敛,除非出现极特殊情况导致LS初始解严重偏离最优值。

    参考GHM,式(2)的LTLS算法估计结果的精度计算式为:

    $$ \left\{ {\begin{array}{*{20}{l}} {\hat \delta _0^2 = \mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}^{\rm{T}}\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{v}}_\mathit{\boldsymbol{l}}}/\mathit{r}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}}) = {{\left( {{\mathit{\boldsymbol{B}}^{\rm{T}}}{{\left( {{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}} \right)}^{ - 1}}\mathit{\boldsymbol{B}}} \right)}^{ - 1}}}\\ {\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}}) = \mathit{\boldsymbol{Q}} - \mathit{\boldsymbol{QA}}_\mathit{\boldsymbol{l}}^{\rm{T}}\left( {\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{Q}}_{\mathit{\boldsymbol{\hat x}}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_\mathit{\boldsymbol{A}}^{ - 1}} \right){\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{l}}}\mathit{\boldsymbol{Q}}} \right)}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat x}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat x}})}\\ {\mathit{\boldsymbol{D}}(\mathit{\boldsymbol{\hat L}}) = \hat \delta _0^2\mathit{\boldsymbol{Q}}(\mathit{\boldsymbol{\hat L}})} \end{array}} \right. $$ (17)

    式中,多余观测数r=n-t; n为观测值个数;t为必要观测值个数;r与GHM的多余观测数相同;$ \boldsymbol{N}_{{\boldsymbol{A}}}=\boldsymbol{A}_{{\boldsymbol{l}}} \boldsymbol{P}^{-1} \boldsymbol{A}_{{\boldsymbol{l}}}^{\mathrm{T}} $。

    按照LTLS算法步骤设计实验,比较LTLS算法与WTLS算法的计算结果,验证LTLS算法的正确性、高效性和可行性。实验1设计模拟数据,比较分析单组实验结果和1 000组实验统计结果,验证LTLS算法的正确性;实验2在待估计量数目取不同量级时,比较两种算法的计算时间,验证LTLS算法的高效性;实验3通过实例验证LTLS算法的可行性。

    在通用EIV模型(式(2))中,设置参数真值X=[5 10]T,系数矩阵AB中随机量的中误差分别设为0.01和0.02,观测向量y的中误差设为0.03。ABy和常数向量w的模拟数据如下:

    $$ \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} {12.469}&{11.096}&{15.872}&{11.725}\\ {8.883}&{10.291}&{2.929}&{3.666}\\ {12.321}&{1.109}&{6.392}&{15.809}\\ {3.551}&{12.104}&{3.867}&{1.257} \end{array}} \right], $$
    $$ \mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{l}} {10.410}&{17.544}\\ {18.033}&{15.171}\\ {18.631}&{15.855}\\ {15.671}&{11.878} \end{array}} \right], $$
    $$ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {27.543}\\ {20.727}\\ {20.839}\\ {25.033} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{c}} { - 1425.323}\\ { - 852.619}\\ { - 1142.913}\\ { - 658.407} \end{array}} \right]。 $$

    采用LTLS算法和WTLS算法的估计结果如表 1所示,LTLS参数解与WTLS参数解完全相等,验证了LTLS算法的正确性。

    表  1  参数解及其方差估计值
    Table  1.  Parameter Values and Mean Square Deviations
    算法 参数解 中误差
    $ \hat {\boldsymbol{X}} _1 $ $ \hat {\boldsymbol{X}} _2 $ $ σ _{\hat{\boldsymbol{X}}_1} $ $ σ_ {\hat{\boldsymbol{X}}_2} $
    LTLS算法 5.012 551 9.994 964 0.039 9 0.051 9
    WTLS算法 5.012 551 9.994 964 0.039 9 0.051 9
    下载: 导出CSV 
    | 显示表格

    为了进一步验证LTLS算法的正确性,首先采用模拟的1 000组数据计算LTLS和WTLS参数解的均值$ {\rm{avg}} (\hat {\boldsymbol{X}} _1) 和 {\rm{avg}} (\hat {\boldsymbol{X}} _2) $,并将参数解均值代入式(17),求得LTLS参数解的协因数阵估值$ {\boldsymbol{Q}}(\hat {\boldsymbol{X}} )$,然后利用参数真值求得精确的参数协因数阵$ \overline{\boldsymbol{Q}}(\hat{\boldsymbol{X}})={\boldsymbol{E}}_{{\boldsymbol{X}}}^{\mathrm{T}} \boldsymbol{E}_{{\boldsymbol{X}}} /(m-n) , {\boldsymbol{E}}_{{\boldsymbol{X}}}=\left[\begin{array}{ll} \hat{{\boldsymbol{X}}}_{1}^{(j)}-5 & \hat{{\boldsymbol{X}}}_{2}^{(j)}-10 \end{array}\right] $,计算结果见表 2。1 000组数据的LTLS参数解和WTLS参数解与参数真值偏差的统计分析见图 1图 2

    表  2  1000组实验的参数解均值和协因数阵
    Table  2.  Average Parameter Values and Co⁃variance Matrix in 1 000 Experiments
    算法 参数解均值 协因数阵
    $ {\rm{avg}} ( \hat{\boldsymbol{X}}_1) $ $ {\rm{avg}} ( \hat{\boldsymbol{X}}_2) $ $ {\boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $ $ \bar{ \boldsymbol{Q }}( \hat{\boldsymbol{X}} ) $
    LTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9
    −0.005 1 0.007 3 −0.004 9 0.007 2
    WTLS算法 5.009 427 9.998 257 0.004 3 −0.005 1 0.004 2 −0.004 9
    −0.005 1 0.007 3 −0.004 9 0.007 2
    下载: 导出CSV 
    | 显示表格
    图  1  1 000组实验数据的LTLS参数解与参数真值偏差统计图
    Figure  1.  Statistical Graph of Deviations Between Truth Values and Parameter Values Soluted by LTLS in 1 000 Experiments
    图  2  1 000组实验数据的WTLS参数解与参数真值偏差统计图
    Figure  2.  Statistical Graph of Deviations Between Truth Values and Parameter Values Soluted by WTLS in 1 000 Experiments

    表 2图 1图 2可以看出,LTLS算法与WTLS算法的统计结果完全一致,说明在每次实验中两种算法所求参数解均一致,验证了LTLS算法的正确性。同时两种计算协因数阵的方法结果非常相近,验证了参数协因数阵一阶近似估计公式(17)的有效性[17]

    为分析LTLS算法的计算效率,设计通用EIV模型中待估计量个数在不同的数量级情况,采用LTLS算法和WTLS算法计算100组模拟数据的平均迭代次数N、平均解算时间t和减少比例(LTLS算法较WTLS算法减少的平均解算时间与WTLS算法平均解算时间之比),结果见表 3

    表  3  LTLS算法和WTLS算法计算效率的比较
    Table  3.  Comparison of Computational Efficiency Between LTLS Algorithm and WTLS Algorithm
    待估量数量 NLTLS NWTLS tLTLS tWTLS 减少比例/%
    10 5.18 4.5 0.224 ms 0.191 ms
    100 5.04 6.36 0.681 ms 0.724 ms 5.9
    1 000 5 6.75 0.033 s 0.044 s 25.0
    10 000 5 7.5 2.681 s 3.909 s 31.4
    下载: 导出CSV 
    | 显示表格

    表 3可以看出,两种算法每次迭代的平均时间基本一致;当模型估计量数量较少时,两种算法的效率基本相当,随着估计量的数量级逐渐增大,LTLS算法的效率高于WTLS算法。原因在于GHM按泰勒级数展开后,仅包含常数项、一阶项(二阶及以上项全部为零),LTLS算法将二阶项纳入常数项,减小了线性化引起的模型误差,迭代计算收敛更快,迭代次数减少,使得计算效率提高。

    本文采用的摄影测量实例示意图如图 3所示,由3个地面摄像机S1S2S3拍摄两个目标点P1P2组成,相机主距f=100 mm,距离l1l2l3l4l5l6y1y2的观测值和中误差见表 4

    图  3  摄影测量实例图
    Figure  3.  Diagram of the Photogrammetry Example in This Paper
    表  4  距离观测值及其中误差
    Table  4.  Distance Observations and Standard Deviations
    统计项 l1/mm l2/mm l3/mm l4/mm l5/mm l6/mm y1/m y2/m
    观测值 14.1 16.6 6.1 7.1 22.1 26.3 10.0 8.0
    中误差 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05
    下载: 导出CSV 
    | 显示表格

    根据图 3可得到误差方程:

    $$ \left\{\begin{array}{l} l_{1} x_{2}-f x_{1}=0 \\ l_{2} x_{4}-f x_{3}=0 \\ l_{3} x_{2}+f y_{1}+f x_{1}=0 \\ l_{4} x_{4}+f y_{1}+f x_{3}=0 \\ l_{5} x_{2}-f y_{1}-f y_{2}+f x_{1}=0 \\ l_{6} x_{4}-f y_{1}-f y_{2}+f x_{3}=0 \end{array}\right. $$ (18)

    构建通用EIV模型来估计点P1和点P2的坐标,由误差方程可得:

    $$ \begin{array}{l} \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0\\ { - f}&0\\ { - f}&0\\ { - f}&{ - f}\\ { - f}&{ - f} \end{array}} \right],\mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} { - f}&{{l_1}}&0&0\\ 0&0&{ - f}&{{l_2}}\\ f&{{l_3}}&0&0\\ 0&0&f&{{l_4}}\\ f&{{l_5}}&0&0\\ 0&0&f&{{l_6}} \end{array}} \right],\\ \mathit{\boldsymbol{y}} = \left[ {\begin{array}{*{20}{l}} {{y_1}}\\ {{y_2}} \end{array}} \right],\mathit{\boldsymbol{x}} = \left[ {\begin{array}{*{20}{l}} {{x_1}}\\ {{x_2}}\\ {{x_3}}\\ {{x_4}} \end{array}} \right],\mathit{\boldsymbol{w}} = \left[ {\begin{array}{*{20}{l}} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}} \right] \end{array} $$ (19)

    由式(19)可知矩阵A不含有随机误差,则该矩阵的改正数矩阵为零矩阵。采用LTLS算法和WTLS算法解算,设置阈值为1×10-8,结果见表 5表 6。两种方法所得坐标估值和距离观测值估值完全一致,该实例表示为通用EIV模型时系数矩阵中待估计量较少,所以两个算法收敛速度相差不大。

    表  5  P1和点P2的坐标估值/m
    Table  5.  Coordinate Estimates of P1 and P2 /m
    算法 坐标估值
    $ \hat x_1 $ $ \hat x_2 $ $ \hat x_3 $ $ \hat x_4 $
    LTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9
    WTLS算法 6.995 056 5 49.715 632 6.981 465 5 41.968 315 9
    下载: 导出CSV 
    | 显示表格
    表  6  距离观测值估值
    Table  6.  Estimation of Distance Observations
    算法 $ \hat l_1 $/mm $ \hat l_2 $/mm $ \hat l_3 $/mm $ \hat l_4 $/mm $ \hat l_5 $5/mm $ \hat l_6 $/mm $ \hat y_1 $/m $ \hat y_2 $/m
    LTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8
    WTLS算法 14.070 1 16.635 1 6.032 4 7.178 4 22.137 7 26.256 7 9.994 1 8.006 8
    下载: 导出CSV 
    | 显示表格

    本文将通用EIV函数模型展开后的二阶项纳入模型的常数项,将通用EIV模型表示为线性形式的GHM,推导出通用EIV模型的线性化整体最小二乘算法和近似精度估计公式。实验结果表明,通用EIV模型的LTLS算法与WTLS算法结果一致,验证了该算法的正确性。此外,LTLS算法估计精度公式和WTLS估计精度公式均为一阶近似精度,因此两种算法参数的估计精度相同。当通用EIV模型的待估量数量较多时,LTLS算法比WTLS计算效率更高,在处理海量数据时更具有优势。

    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220397
  • 图  1   在钻孔中观测平面应变张量的原理模型和4个元件结构示意图

    Figure  1.   Principle Model of Plane Strain Tensor Observed in Boreholes and Schematic Structure of 4 Gauges

    图  2   在均匀各向同性介质中应力与变形的关系

    Figure  2.   Relationship Between Stress and Deformation in Homogeneous Isotropic Medium

    图  3   高台观测站的观测值和替代观测值曲线

    Figure  3.   Curves of Observation and Substitution Values of Gaotai Station

    图  4   张-压应力相互作用下S13>0、S24>0时钻孔区域应力应变状态的判定方法

    Figure  4.   Determination Method of Stress-Strain State in Borehole Area Under Tension-Compression Stress Interaction When S13>0,S24>0

    图  5   张-压应力相互作用下钻孔区域应力应变状态的判定

    Figure  5.   Determination of Stress-Strain State in Borehole Area Under Tension-Compression Stress Interaction

    图  6   张应力作用下钻孔区域应力应变状态的判定

    Figure  6.   Determination of Stress-Strain State in Borehole Area Under Tension Stress

    图  7   压应力作用下钻孔区域应力应变状态的判定

    Figure  7.   Determination of Stress-Strain State in Borehole Area Under Compression Stress

    图  8   四分量钻孔应变观测的震前应力应变状态和GNSS观测的速度场及面应变场

    Figure  8.   Pre-Earthquake Stress-Strain State of 4-Component Borehole Strainmeters and Velocity Field and Plane Strain Field of GNSS

    图  9   门源站应变参数时间序列及应力应变状态的动态变化

    Figure  9.   Time Series of Strain Parameters and Dynamic Change of Stress - Strain State of Menyuan Station

    图  10   门源4个分量、两组替代面应变和替代剪应变的同震曲线(2022-01-08—2022-01-09)

    Figure  10.   Coseismic Curves of 4 Components, 2 Groups of Alternative Plane Strain and Alternative Shear Strain at Menyuan Station(2022-01-08 to 2022-01-09)

    图  11   同震位移场、应力场的模拟值与实测值对比分析

    Figure  11.   Comparative Analysis of Simulated and Measured Values of Coseismic Displacement Field and Stress Field

  • [1]

    SACKS I S, SUYEHIRO S, EVERTSON D W. Sacks-Evertson Strainmeter, Its Installation in Japan and Some Preliminary Results Concerning Strain Steps[J]. Proceedings of the Japan Academy,1971,47(9): 707-712.

    [2] 欧阳祖熙, 张宗润, 舒桂林. 中国西部钻孔应变仪台网工作回顾与前瞻[J]. 岩石力学与工程学报, 2004, 23(23): 4058-4062.

    OUYANG Zuxi, ZHANG Zongrun, SHU Guilin. Review and Outlook for West China Borehole Strainmeter Networks[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(23): 4058-4062.

    [3] 苏恺之.液位型体积式应变仪的工作原理[J].地震科学研究, 1982(4): 57.

    SU Kaizhi.Working Principle of Liquid Level Volumetric Strain Gauge[J].Seismological Research, 1982(4): 57.

    [4] 池顺良. 用于地层应力-应变观测的压容式钻孔应变仪[J]. 地震, 1985, 5(3): 18-22.

    CHI Shunliang. Pressure Capacitive Borehole Strain Gauge for Formation Stress-Strain Observation [J]. Earthquake, 1985, 5(3): 18-22.

    [5]

    GLADWIN M T, GWYTHER R L, HART R H G,et al.Measurements of the Strain Field Associated with Episodic Creep Events on the San Andreas Fault at San Juan Bautista, California[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4559-4565.

    [6]

    ISHII H. Development of New Multi-component Borehole Instrument[R]. Ranmaru City, Japan: Report of Tono Research Institute of Earthquake Scien‑ce,2001.

    [7]

    LINDE A T, GLADWIN M T, JOHNSTON M J S, et al. A Slow Earthquake Sequence on the San Andreas Fault[J]. Nature, 1996, 383: 65-68.

    [8]

    BARBOUR A J, AGNEW D C, WYATT F K. Coseismic Strains on Plate Boundary Observatory Borehole Strainmeters in Southern California[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 431-444.

    [9]

    GONG Z, JING Y, LI H B, et al. Static-Dynamic Strain Response to the 2016 M 6.2 Hutubi Earthquake (Eastern Tien Shan, NW China) Recorded in a Borehole Strainmeter Network[J]. Journal of Asian Earth Sciences, 2019, 183: 103958.

    [10] 吕品姬, 李正媛, 孙伶俐, 等. 2022年汤加火山喷发对中国大陆地应变观测的影响分析[J]. 武汉大学学报(信息科学版), 2022, 47(6): 927-933.

    Pinji LÜ, LI Zhengyuan, SUN Lingli, et al. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933.

    [11] 石耀霖, 范桃园. 地应力观测井中元件标定及应力场计算方法[J]. 地震, 2000, 20(2): 101-106.

    SHI Yaolin, FAN Taoyuan. Borehole in Situ Calibration of Stress Sensors and Calculation of Variation of Stress Field During Long Term Observation[J]. Earthquake, 2000, 20(2): 101-106.

    [12]

    QIU Z H, TANG L, ZHANG B H, et al. In Situ Calibration of and Algorithm for Strain Monitoring Using Four-Gauge Borehole Strainmeters (FGBS)[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1609-1618.

    [13] 唐磊, 邱泽华, 宋茉. 钻孔四分量应变观测自检内精度分析[J]. 大地测量与地球动力学, 2010, 30(S2): 36-39.

    TANG Lei, QIU Zehua, SONG Mo. Self-test Accuracy of 4-Component Borehole Strain Observation[J]. Journal of Geodesy and Geodynamics, 2010, 30(S2): 36-39.

    [14] 邱泽华, 张宝红, 池顺良, 等. 汶川地震前姑咱台观测的异常应变变化[J]. 中国科学: 地球科学, 2010, 40(8): 1031-1039.

    QIU Zehua, ZHANG Baohong, CHI Shunliang, et al. Abnormal Strain Changes Observed at Guzan Station Before Wenchuan Earthquake[J]. Scientia Sinica (Terrae), 2010, 40(8): 1031-1039.

    [15] 刘琦, 张晶, 池顺良, 等. 2013年芦山Ms 7.0地震前后姑咱台四分量钻孔应变时频特征分析[J]. 地震学报, 2014, 36(5): 770-779.

    LIU Qi, ZHANG Jing, CHI Shunliang, et al. Time-Frequency Characteristics of Four-Component Borehole Strain at Guzan Station Before and After 2013 Lushan Ms7.0 Earthquake[J]. Acta Seismologica Sinica, 2014, 36(5): 770-779.

    [16] 李玉丽, 安黎霞, 李启雷, 等.格尔木地震台钻孔应变仪映震性能分析[J].地震研究, 2014,37(S1): 83-87.

    LI Yuli, AN Lixia, LI Qilei, et al.Analysis on Earthquake Response Ability of the Borehole Strain Meter in Golmud Seismic Station[J].Journal of Seismological Research, 2014,37(S1): 83-87.

    [17] 师娅芳, 孙宗强, 师家升, 等. 滇黔地区钻孔应变观测记震能力研究[J]. 国际地震动态, 2015, 45(1): 8-14.

    SHI Yafang, SUN Zongqiang, SHI Jiasheng, et al. Research on the Earthquake Responding Ability of Borehole Strain Observation in Yunnan-Guizhou Region, China[J]. Recent Developments in World Seismology, 2015, 45(1): 8-14.

    [18] 邱泽华, 石耀霖. 观测应变阶在地震应力触发研究中的应用[J]. 地震学报, 2004, 26(5):481-488.

    QIU Zehua, SHI Yaolin.Application of Observed Strain Steps to the Study of Remote Earthquake Stress Triggering[J]. Acta Seismologica Sinica, 2004, 26(5): 481-488.

    [19] 唐磊,邱泽华,郭燕平,等.日本9.0级地震引起的应变阶分析[J].地震地磁观测与研究, 2011,32(6): 13-16.

    TANG Lei, QIU Zehua, GUO Yanping, et al. An Analysis on Strain Step Caused by Ms9.0 Earthquake in Japan [J]. Seismological and Geomagnetic Observation and Research, 2011,32(6):13-16.

    [20] 唐磊, 荆燕.川滇地区钻孔四分量应变仪记录的同震应变阶分析[J].震灾防御技术, 2013,8(4): 370-376.

    TANG Lei, JING Yan.Analysis of Coseismic Strain Step Observed by 4-Component Borehole Strain Meters in Sichuan-Yunnan Region[J].Technology for Earthquake Disaster Prevention, 2013,8(4):370-376.

    [21] 董培育, 任天翔, 杨少华, 等.钻孔应变观测同震阶变时的一个问题及对策分析[J].地质力学学报, 2015,21(3):359-370.

    DONG Peiyu, REN Tianxiang, YANG Shaohua, et al. A Problem and Explanation for Borehole Strain Meter Records of Co-seismic Strain Steps[J].Journal of Geomechanics, 2015,21(3): 359-370.

    [22] 李富珍, 张怀, 唐磊, 等.基于钻孔应变地震波记录确定地震面波应变震级[J]. 地球物理学报, 2021,64(5): 1620-1631.

    LI Fuzhen, ZHANG Huai, TANG Lei, et al.Determination of Seismic Surface Wave Strain Magnitude Based on Borehole Strain Seismic Wave Records[J].Chinese Journal of Geophysics,2021,64(5): 1620-1631.

    [23] 龚正, 李海兵, 荆燕, 等. 2016年M6.2呼图壁地震发震构造及其对天山构造带隆升的启示:来自中近场钻孔应变观测的证据[J].地球物理学报, 2020,63(4):1386-1402.

    GONG Zheng, LI Haibing, JING Yan, et al.Seismogenic Structure of the 2016 M6.2 Hutubi Earthquake and Its Implication for the Uplift Process in Tian Shan: Evidence from Borehole Strainmeters in the Near to Intermediate Field[J].Chinese Journal of Geophysics, 2020,63(4): 1386-1402.

    [24]

    LI Y J, ZHANG H P, TANG L,et al.Seismogenic Faulting of the 2016 Mw 6.0 Hutubi Earthquake in the Northern Tien Shan Region: Constraints from Near-Field Borehole Strain Step Observations and Numerical Simulations[J].Frontiers in Earth Scien‑ce,2020,8:588304.

    [25] 邱泽华,唐磊,郭燕平,等.用四分量钻孔应变仪观测构造应变速率[J].地球物理学进展,2020,35(5):1688-1701.

    QIU Zehua,TANG Lei,GUO Yanping,et al.Observing Tectonic Strain Rates using Four-Gauge-Borehole-Strainmeters(FGBS)[J].Progress in Geophysics, 2020, 35(5):1688-1701.

    [26] 张凌空, 牛安福, 吴利军.地壳应变场观测中体应变与面应变转换系数的计算[J]. 地震学报, 2012,34(4):476-486.

    ZHANG Lingkong, NIU Anfu,WU Lijun.Conversion Factors from Volume to Area Strain in Crustal Strain Observation[J].Acta Seismologica Sinica, 2012,34(4): 476-486.

    [27] 李富珍,任天翔,池顺良,等.基于钻孔应变观测资料分析远震造成的动态库仑应力变化[J].地球物理学报,2021,64(6): 1949-1974.

    LI Fuzhen, REN Tianxiang, CHI Shunliang, et al.The Dynamic Coulomb Stress Changes Caused by Remote Earthquakes Based on the Borehole Strainmeter Data[J].Chinese Journal of Geophysics, 2021,64(6):1949-1974.

    [28] 石耀霖, 尹迪, 任天翔, 等.首次直接观测到与理论预测一致的同震静态应力偏量变化: 2016年4月7日山西原平ML4.7地震的钻孔应变观测[J]. 地球物理学报, 2021,64(6): 1937-1948.

    SHI Yaolin, YIN Di, REN Tianxiang,et al.The Variation of Coseismic Static Stress Deviation Consistent with Theoretical Prediction was Observed for the First Time: Observation of Borehole Strain of the Yuanping ML4.7 Earthquake in Shanxi on April 7, 2016[J].Chinese Journal of Geophysics,2021,64(6): 1937-1948.

    [29] 邱泽华. 钻孔应变观测理论和应用[M]. 北京: 地震出版社, 2017.

    QIU Zehua.Borehole Strain Observation, Theory and Application[M]. Beijing: Seismological Press, 2017.

    [30] 韩立波. 2022年青海门源Ms 6.9 地震震源机制解[J]. 地震科学进展, 2022, 52(2): 49-54.

    HAN Libo. Focal Mechanism of 2022 Menyuan Ms 6.9 Earthquake in Qinghai Province[J]. Progress in Earthquake Sciences, 2022,52(2): 49-54.

    [31] 许英才,郭祥云,冯丽丽. 2022年1月8日青海门源Ms 6.9地震序列重定位和震源机制解研究[J].地震学报,2022,44(2):195-210.

    XU Yingcai,GUO Xiangyun,FENG Lili.Relocation and Focal Mechanism Solutions of the Ms6.9 Menyuan Earthquake Sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,2022,44(2):195-210.

    [32] 李智敏,盖海龙,李鑫,等.2022年青海门源Ms6.9级地震发震构造和地表破裂初步调查[J].地质学报,2022,96(1):330-335.

    LI Zhimin, GAI Hailong, LI Xin,et al.Seismogenic Fault and Coseismic Surface Deformation of the Menyuan Ms6.9 Earthquake in Qinghai, China[J].Acta Geologica Sinica, 2022,96(1):330-335.

    [33]

    LI Y S, JIANG W L, LI Y J, et al. Coseismic Rupture Model and Tectonic Implications of the January 7, 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation[J]. Remote Sensing, 2022,14(9):2111.

    [34]

    OKADA Y.Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985,75(4):1135-1154.

    [35]

    WANG R J, LORENZO-MARTÍN F, ROTH F.PSGRN/PSCMP: A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory[J].Computers & Geoscien‑ces, 2006,32(4): 527-541.

    [36] 李煜航, 梁诗明, 郝明, 等. 2022年1月8日门源Ms 6.9地震同震位移场及其发震断层形变破裂特征[J]. 地球物理学报, 2023,66(2):589-601.

    LI Yuhang,LIANG Shiming,HAO Ming,et al.Coseismic Displacement Field of Menyuan Ms6.9 Earthquake on January 8, 2022 and Its Implications for Rupture Characters of Seismogenic Faults[J]. Chinese Journal of Geophysics, 2023,66(2):589-601.

  • 期刊类型引用(6)

    1. 杨根新,王友昆,谢正明. 基于广义EIV模型的矿区高程异常的无缝推估算法. 工程勘察. 2023(08): 46-51 . 百度学术
    2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 . 必应学术
    3. 翁烨,陈丽,王岩. 线性化通用EIV平差模型的正则化解法. 勘察科学技术. 2023(05): 1-5 . 百度学术
    4. 戴中东,孟良,高永攀,项伟. 加权整体最小二乘坐标匹配算法在机场道面测量中的应用. 测绘地理信息. 2022(02): 61-66 . 百度学术
    5. 翁烨,邵德盛,甘淑. 线性化通用EIV平差模型的岭估计解法. 全球定位系统. 2022(02): 82-89 . 百度学术
    6. 翁烨,邵德盛. 病态加权总体最小二乘的广义岭估计解法. 全球定位系统. 2021(06): 84-89 . 百度学术

    其他类型引用(2)

图(11)
计量
  • 文章访问数:  679
  • HTML全文浏览量:  81
  • PDF下载量:  76
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-06-27
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2025-01-04

目录

/

返回文章
返回