参数优化变分模态分解的GNSS坐标时间序列降噪方法

鲁铁定, 何锦亮, 贺小星, 陶蕊

鲁铁定, 何锦亮, 贺小星, 陶蕊. 参数优化变分模态分解的GNSS坐标时间序列降噪方法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363
引用本文: 鲁铁定, 何锦亮, 贺小星, 陶蕊. 参数优化变分模态分解的GNSS坐标时间序列降噪方法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363
LU Tieding, HE Jinliang, HE Xiaoxing, TAO Rui. GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363
Citation: LU Tieding, HE Jinliang, HE Xiaoxing, TAO Rui. GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1856-1866. DOI: 10.13203/j.whugis20220363

参数优化变分模态分解的GNSS坐标时间序列降噪方法

基金项目: 

国家自然科学基金 42061077

国家自然科学基金 42374040

国家自然科学基金 42064001

国家自然科学基金 42104023

江西省自然科学基金 20202BABL213033

江西省自然科学基金 20202BAB212010

2022年度中国科协科技智库青年人才计划 

详细信息
    作者简介:

    鲁铁定,博士,教授,主要从事测绘数据处理研究。tdlu@whu.edu.cn

    通讯作者:

    何锦亮,硕士。hejjlxin@163.com

GNSS Coordinate Time Series Denoising Method Based on Parameter-Optimized Variational Mode Decomposition

  • 摘要:

    针对全球导航卫星系统(global navigation satellite system,GNSS)坐标时间序列中噪声成分难以有效滤除的问题,构建一种基于参数优化变分模态分解(variational mode decomposition,VMD)的降噪方法。该方法首先以排列熵结合互信息为适应度函数,利用灰狼优化(grey wolf optimization,GWO)算法自适应获取VMD的模态分解个数K和二次惩罚因子α的最优参数组合;然后将GNSS坐标时间序列分解为K个本征模态函数分量,并利用样本熵确定有效模态分量,将其重构为有效信号,从而实现信号与噪声的有效分离;最后,利用仿真信号和中国地壳运动观测网络的20个基准站的实测数据进行实验,将GWO-VMD方法与经验模态分解、小波降噪和基于VMD的降噪方法进行对比分析。结果表明,GWO-VMD方法能够更为有效地去除GNSS坐标时间序列中的噪声,且能较好地保留信号的原始特征,为后续的分析处理提供可靠数据。

    Abstract:
    Objectives 

    In order to effectively filter out complex noise components in GNSS coordinate time series and extract effective signals, we construct a denoising method based on parameter-optimized variational modal decomposition (VMD).

    Methods 

    First, the combination of permutation entropy and mutual information is used as fitness function, and the optimal parameter combination of the mode decomposition number K and the quadratic penalty factor α of VMD is obtained by using grey wolf optimization algorithm(GWO). Then the GNSS coordinate time series is decomposed into K eigen mode function components by VMD. Finally, the sample entropy is used to determine the effective modal component, which is reconstructed as an effective signal, so as to realize the effective separation of signal and noise.The GWO-VMD method is compared and analyzed with the empirical mode decomposition (EMD), wavelet denoising (WD) and IVMD methods by using the simulated signal and the measured data from 20 reference stations of the crustal movement observation network of China for experiments.

    Results 

    The simulated signal experiments show that the three denoising evaluation indexes of root mean square error,correlation coefficient and signal-to-noise ratio of GWO-VMD denoising signal are better than EMD, WD and IVMD methods. The experiments on the measured data show that the GWO-VMD method can reduce the amplitude of noise significantly. In terms of the velocity uncertainty of the reference station, the overall GWO-VMD method reduces the velocity uncertainty better than the EMD, WD and IVMD methods.

    Conclusions 

    The GWO-VMD method can more effectively remove the noise from GNSS coordinate time series and better preserve the original characteristics of the signal, which can provide reliable data for subsequent analysis and processing.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220363

  • 图  1   GWO-VMD降噪流程

    Figure  1.   Denoising Process of GWO-VMD

    图  2   仿真信号Ⅰ及其各分量波形

    Figure  2.   Waveforms of Simulated Signal Ⅰ and Its Components

    图  3   适应度值的收敛图

    Figure  3.   Convergence Diagram of Fitness Values

    图  4   仿真信号Ⅰ 4种方法的信号分解图

    Figure  4.   Signal Decomposition Diagrams of Four Methods for Simulated Signal Ⅰ

    图  5   仿真信号Ⅱ的波形

    Figure  5.   Waveform of Simulated Signal Ⅱ

    图  6   仿真信号Ⅱ 4种方法的降噪效果

    Figure  6.   Denoising Effect of Four Methods for Simulated Signal Ⅱ

    图  7   20个基准站的数据缺失情况

    Figure  7.   Missing Data from 20 Reference Stations

    图  8   20个基准站E、N、U方向的最优参数

    Figure  8.   Optimal Parameters of 20 Reference Stations in Directions E, N and U

    图  9   BJFS站坐标时间序列4种方法的降噪效果

    Figure  9.   Denoising Effect of 4 Methods for BJFS Station Coordinate Time Series

    图  10   降噪前及4种方法降噪后的基准站速度不确定度

    Figure  10.   Velocity Uncertainty of the Reference Station Before and After Denoising by Four Methods

    表  1   GWO-VMD分解后各IMF的样本熵

    Table  1   Sample Entropy of Each IMF After GMO-VMD Decomposition

    信号分量IMF1IMF2IMF3IMF4IMF5IMF6IMF7IMF8IMF9IMF10
    样本熵0.105 90.320 20.470 50.610 80.601 30.562 20.656 80.579 90.640 20.637 2
    下载: 导出CSV

    表  2   仿真信号Ⅰ 4种方法的降噪评价指标

    Table  2   Denoising Evaluation Indexes of the Four Methods for Simulated Signal Ⅰ

    降噪方法RMSE/mm相关系数SNR/dB
    原始信号1.400.953 39.87
    EMD0.910.979 313.86
    WD0.730.986 615.73
    IVMD0.480.994 219.27
    GWO-VMD0.460.994 819.74
    下载: 导出CSV

    表  3   仿真信号Ⅱ 4种方法的降噪评价指标

    Table  3   Denoising Evaluation Indexes of the Four Methods for Simulated Signal Ⅱ

    降噪方法RMSE/mm相关系数SNR/dB
    原始信号2.060.895 112.78
    EMD1.310.953 816.80
    WD0.480.993 625.39
    IVMD0.500.992 524.99
    GWO-VMD0.420.994 826.53
    下载: 导出CSV

    表  4   20个基准站E、N、U分量的最优噪声模型

    Table  4   The Optimal Noise Model for E, N, U Components of 20 Reference Stations

    测站最优噪声模型测站最优噪声模型
    ENUENU
    BJFSWN+FN+RWNWN+FN+RWNWN+FNSUIYWN+FN+RWNWN+FN+RWNWN+FN
    BJSHWN+FN+RWNWN+FNWN+PLTAINWN+FNWN+FNWN+PL
    CHUNWN+FN+RWNWN+FNWN+FNURUMWN+FN+RWNWN+FN+RWNWN+FN
    DLHAWN+FN+RWNWN+FN+RWNWN+FNWUHNWN+FN+RWNWN+FNWN+FN+RWN
    GUANWN+FN+RWNWN+FNWN+FNWUSHWN+FNWN+FNWN+FN
    HRBNWN+FN+RWNWN+FNWN+FNXIAGWN+PLWN+PLWN+FN
    JIXNWN+FN+RWNWN+FN+RWNWN+FNXIAMWN+FN+RWNWN+FN+RWNWN+FN
    KMINWN+FN+RWNWN+FN+RWNWN+FNXNINWN+FN+RWNWN+FN+RWNWN+FN
    LUZHWN+FN+RWNWN+FNWN+FNYANCWN+FNWN+FNWN+FN
    QIONWN+FNWN+FNWN+FNZHNZWN+FN+RWNWN+FNWN+FN
    下载: 导出CSV

    表  5   E、N、U方向主要噪声模型下的噪声振幅均值

    Table  5   The Mean Value of Noise Amplitude Under the Main Noise Models in E, N and U Directions

    方向噪声模型原始数据噪声振幅均值
    EMDWDIVMDGWO-VMD
    EWN+FN+RWN0.76+3.46+2.720.00+0.00+2.780.00+0.00+1.780.00 +0.00+1.400.00+0.00+0.82
    NWN+FN0.72+3.700.00+1.230.00+1.010.00+0.930.00+0.68
    WN+FN+RWN0.67+3.04+3.080.00+0.00+3.910.00+0.00+2.180.00+0.00+1.530.00+0.00+1.20
    UWN+FN2.62+14.100.00+4.110.00+2.880.00+2.980.00+2.21
    注:WN、FN和RWN的单位分别为mmmm/a0.25mm/a0.5
    下载: 导出CSV

    表  6   20个基准站的速度不确定度的平均改正率/%

    Table  6   Average Correction Rate of Velocity Uncertainty of 20 Reference Stations/%

    方向平均改正率
    EMDWDIVMDGWO-VMD
    E15.650.355.871.4
    N29.058.066.472.8
    U68.479.276.883.3
    下载: 导出CSV
  • [1]

    Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-Derived Site Position Time Series[J]. Journal of Geophysical Research: Solid Earth, 2002,107:1-16.

    [2]

    Bos M S, Bastos L, Fernandes R. The Influence of Seasonal Signals on the Estimation of the Tectonic Motion in Short Continuous GPS Time-Series[J]. Journal of Geodynamics, 2010, 49(3):205-209.

    [3] 贺小星,孙喜文,马飞虎,等.随机模型对IGS站速度及其不确定度影响分析[J].测绘科学,2019,44(1):36-41.

    He Xiaoxing, Sun Xiwen, Ma Feihu,et al.Influence of Stochastic Model on IGS Station Velocity and Uncertainty[J].Science of Surveying and Mapping,2019,44(1):36-41.

    [4] 马俊,曹成度,姜卫平,等.利用小波包系数信息熵去除GNSS站坐标时间序列有色噪声[J].武汉大学学报(信息科学版),2021,46(9):1309-1317.

    Ma Jun, Cao Chengdu, Jiang Weiping, et al. Elimination of Colored Noise in GNSS Station Coordinate Time Series by Using Wavelet Packet Coefficient Information Entropy[J]. Geomatics and Information Science of Wuhan University,2021,46(9):1309-1317.

    [5]

    Ji K, Shen Y, Wang F. Signal Extraction from GNSS Position Time Series Using Weighted Wavelet Analysis[J]. Remote Sensing,2020,12(6): 992.

    [6]

    Chen Q, van Dam T, Sneeuw N, et al. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J].Journal of Geodynamics, 2013, 72: 25-35.

    [7]

    Khazraei S M, Amiri-Simkooei A R. On the Application of Monte Carlo Singular Spectrum Analysis to GPS Position Time Series[J]. Journal of Geodesy, 2019, 93(9): 1401-1418.

    [8] 张双成,李振宇,何月帆,等.GNSS高程时间序列周期项的经验模态分解提取[J].测绘科学,2018,43(8):80-84.

    Zhang Shuangcheng, Li Zhenyu, He Yuefan, et al. Extracting of Periodic Component of GNSS Vertical Time Series Using EMD[J]. Science of Surveying and Mapping,2018,43(8):80-84.

    [9]

    Qiu X, Wang F, Zhou Y, et al. Weighted Empirical Mode Decomposition for Processing GNSS Position Time Series with the Consideration of Formal Errors[J]. Acta Geodynamica et Geromaterialia, 2021, 18(3): 399-409.

    [10] 嵇昆浦,沈云中.含缺值GNSS基准站坐标序列的非插值小波分析与信号提取[J].测绘学报,2020,49(5):537-546.

    Ji Kunpu, Shen Yunzhong. Dyadic Wavelet Transform and Signal Extraction of GNSS Coordinate Time Series with Missing Data[J]. Acta Geodaetica et CartographicaSinica,2020,49(5):537-546.

    [11] 戴海亮,孙付平,姜卫平,等.小波多尺度分解和奇异谱分析在GNSS站坐标时间序列分析中的应用[J].武汉大学学报(信息科学版),2021,46(3):371-380.

    Dai Hailiang, Sun Fuping, Jiang Weiping, et al. Application of Wavelet Decomposition and Singular Spectrum Analysis to GNSS Station Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University,2021,46(3):371-380.

    [12] 刘希康, 丁志峰, 李媛, 等. EMD在GNSS时间序列周期项处理中的应用[J]. 武汉大学学报(信息科学版), 2023, 48(1): 135-145.

    Liu Xikang, Ding Zhifeng, Li Yuan, et al. Application of EMD to GNSS Time Series Periodic Term Processing[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 135-145.

    [13]

    Wu Z, Huang N E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method[J].Advances in Adaptive Data Analysis,2009,1(1): 1-41

    [14]

    Yeh J R, Shieh J S, Huang N E. Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method[J].Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.

    [15]

    Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.

    [16]

    Xu H, Lu T, Montillet J P, et al. An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series[J]. Sensors, 2021, 21(24): 8295.

    [17] 罗亦泳,黄城,张静影.基于变分模态分解的变形监测数据去噪方法[J].武汉大学学报(信息科学版),2020,45(5):784-790.

    Luo Yiyong,Huang Cheng,Zhang Jingying.Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University,2020,45(5):784-790.

    [18] 鲁铁定,谢建雄.变分模态分解结合样本熵的变形监测数据降噪[J].大地测量与地球动力学,2021,41(1):1-6

    Lu Tieding, Xie Jianxiong.Deformation Monitoring Data De-noising Method Based on Variational Mode Decomposition Combined with Sample Entropy[J].Journal of Geodesy and Geodynamics,2021,41(1):1-6

    [19]

    Mirjalili S,Mirjalili S M,Lewis A. Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61.

    [20] 王进花,胡佳伟,曹洁,等.基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J].吉林大学学报(工学版),2022,52(2):318-328.

    Wang Jinhua, Hu Jiawei, Cao Jie, et al. Multi-fault Diagnosis of Rolling Bearing Based on Adaptive Variational Modal Decomposition and Integrated Extreme Learning Machine[J]. Journal of Jilin University(Engineering and Technology Edition) ,2022,52(2):318-328.

    [21] 刘建昌,权贺,于霞,等.基于参数优化VMD和样本熵的滚动轴承故障诊断[J].自动化学报,2022,48(3):808-819.

    Liu Jianchang, Quan He, Yu Xia, et al. Rolling Bearing Fault Diagnosis Based on Parameter Optimization VMD and Sample Entropy[J]. Acta Automatica Sinica,2022,48(3):808-819.

    [22]

    Bandt C, Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series[J]. Physical Review Letters, 2002, 88(17): 174102.

    [23] 武小梅,林翔,谢旭泉,等.基于VMD-PE和优化相关向量机的短期风电功率预测[J].太阳能学报,2018,39(11):3277-3285.

    Wu Xiaomei, Lin Xiang, Xie Xuquan, et al. Short-Term Wind Power Forecasting Based on VariationalMode Decomposition-Permutation Entropy and Optimized Relevance Vector Machine [J]. Acta Energiae Solaris Sinica,2018,39(11):3277-3285.

    [24] 周小龙,刘薇娜,姜振海,等.变分模态分解的Volterra模型和形态学分形维数在发动机故障诊断中的应用[J].汽车工程,2019,41(12):1442-1449.

    Zhou Xiaolong, Liu Weina, Jiang Zhenhai, et al. Application of Volterra Mode of Variational Mode Decomposition and Morphology Fractal Dimension in Engine Fault Diagnosis[J].Automotive Engineering,2019,41(12):1442-1449.

    [25] 贾瑞生,赵同彬,孙红梅,等.基于经验模态分解及独立成分分析的微震信号降噪方法[J].地球物理学报,2015,58(3):1013-1023.

    Jia Ruisheng, Zhao Tongbin, Sun Hongmei, et al. Micro-seismic Signal Denoising Method Based on Empirical Mode Decomposition and Independent Component Analysis[J]. Chinese Journal of Geophysics,2015,58(3):1013-1023.

    [26] 蔡晓军,杨建华.基于多通道奇异谱的GNSS坐标序列粗差探测与数据插值[J].测绘工程,2019,28(5):20-28.

    Cai Xiaojun,Yang Jianhua. Gross Error Detection and Data Interpolation for GNSS Coordinates Time Series Based on Multichannel Singular Spectrum[J].Engineering of Surveying and Mapping,2019,28(5):20-28.

    [27]

    Bos M S, Fernandes R M S, Williams S D P, et al. Fast Error Analysis of Continuous GNSS Observations with Missing Data[J]. Journal of Geodesy, 2013, 87(4): 351-360.

    [28] 贺小星. GPS坐标序列噪声模型估计方法研究[D].武汉: 武汉大学,2016.

    He Xiaoxing. Study on the Noise Model of GPS Coordinates Time Series[D].Wuhan:Wuhan University,2016.

    [29]

    Bos M S, Fernandes R M S, Williams S D P, et al. Fast Error Analysis of Continuous GPS Observations[J]. Journal of Geodesy, 2008, 82(3): 157-166.

  • 期刊类型引用(4)

    1. 朱杰,郑加柱,陈红华,杨静,胡平昌,陆敏燕. 结合POI数据的南京市商业中心识别与集聚特征研究. 现代测绘. 2022(06): 34-39 . 百度学术
    2. 金澄,安晓亚,陈占龙,马啸川. 矢量居民地多边形多级图划分聚类方法. 武汉大学学报(信息科学版). 2021(01): 19-29 . 百度学术
    3. 张铭龙,何贞铭. 基于因子分析法的城市商业中心抽取研究. 地理空间信息. 2021(08): 58-60+64+5 . 百度学术
    4. 李卫东,张铭龙,段金龙. 基于POI数据的南京市空间格局定量研究. 世界地理研究. 2020(02): 317-326 . 百度学术

    其他类型引用(3)

图(10)  /  表(6)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  74
  • PDF下载量:  94
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-10-24
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2024-10-04

目录

    /

    返回文章
    返回