基于XGBoost模型的高分辨率遥感滑坡快速提取与分析研究

Rapid Landslide Extraction and Analysis Based on XGBoost from High Resolution Remote Sensing

  • 摘要: 为了提高滑坡提取工作效率,探寻区域性滑坡与单体滑坡的时空分布特点,设计了一种滑坡快速提取模型,旨在为滑坡灾害防治管理提供科学依据。以多时相国产高分辨率遥感卫星影像、先进对地观测卫星12.5 m数字高程模型、历史滑坡隐患点为基础数据源,选择位于中国重庆市奉节县西北部的8个滑坡易发乡镇组成研究区,将基于SHAP解释框架的特征优选和基于Optuna框架的贝叶斯超参数自动优化方法引入极端梯度提升算法(extreme gradient boosting, XGBoost)算法中构建并优化滑坡提取模型,实现了2013年、2015年、2018年、2020年研究区滑坡空间信息的快速提取和滑坡时空分布的定量分析。结果表明:(1)在模型精度对比中,以优化XGBoost基础算法构建的滑坡提取模型的准确率、精确率、Kappa系数、受试者工作特征曲线下的面积值分别为96.26%、90.91%、0.860 2、0.970 5,高于对比模型GBDT、LightGBM与Adaboost。(2)2013—2020年研究区滑坡发育程度整体偏高,滑坡在乡镇间的空间分布不均,沿河谷、河流两侧呈条带状分布,具有地段集中性特点。(3)2013—2020年庙湾滑坡发育强度高、活动强烈、复活现象多次发生并曾诱发新生滑坡,其所处斜坡坡度约25°~45°,地形特征变化较小,显著性变化主要集中在色调、纹理、几何形态与植被覆盖率等特征表现上。

     

    Abstract:
    Objectives In order to improve the efficiency of landslide extraction and explore the spatial-temporal distribution characteristics of regional landslides and single landslide, a rapid landslide extraction model is designed to provide a scientific basis for landslide disaster prevention and management.
    Methods Based on multi-temporal domestic high-resolution remote sensing satellite images, advanced land observing satellite 12.5 m digital elevation model, and historical landslide hidden danger points, this study selected 8 landslide-prone townships located in the northwest of Fengjie County, Chongqing city,China to form the study area. Feature optimization based on SHAP in terpretation framework and Bayesian hyperparameter automatic optimization based on Optuna framework are introduced into XGBoost algorithm to construct and optimize the landslide extraction model. The study realized rapid extraction of landslide spatial information and quantitative analysis of landslide spatialtemporal distribution in 2013, 2015, 2018 and 2020.
    Results In the comparison of models accuracy, precision, Kappa coefficient and area under curve value of landslide extraction model constructed by optimized XGBoost basic algorithm are 96.26%, 90.91%, 0.860 2 and 0.970 5, respectively, which higher than GBDT, LightGBM and Adaboost.
    Conclusions From 2013 to 2020, the overall development degree of landslides in the study area is relatively high, and the spatial distribution of landslides is uneven among villages and towns, and the landslides is distributed on both sides of the river valley and the river, showing the characteristics of regional concentration. From 2013 to 2020, Miaowan landslide has high development intensity, strong activity, repeated resurrection phenomenon and induced new landslides. The slope of the landslide is about 25°-45°, and it’s topographic characteristics change little, significant changes mainly focus on color, texture, geometry and vegetation coverage.

     

/

返回文章
返回