顾及有效角动量信息的地球自转参数中长期预报方法

王乐洋, 苗威

王乐洋, 苗威. 顾及有效角动量信息的地球自转参数中长期预报方法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(10): 1846-1855. DOI: 10.13203/j.whugis20220246
引用本文: 王乐洋, 苗威. 顾及有效角动量信息的地球自转参数中长期预报方法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(10): 1846-1855. DOI: 10.13203/j.whugis20220246
WANG Leyang, MIAO Wei. Medium-Long Term Forecasting Method for Earth Rotation Parameters Considering Effective Angular Momentum Information[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1846-1855. DOI: 10.13203/j.whugis20220246
Citation: WANG Leyang, MIAO Wei. Medium-Long Term Forecasting Method for Earth Rotation Parameters Considering Effective Angular Momentum Information[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1846-1855. DOI: 10.13203/j.whugis20220246

顾及有效角动量信息的地球自转参数中长期预报方法

基金项目: 

国家自然科学基金 41874001

国家自然科学基金 42174011

江西省研究生创新基金 YC2021-S614

详细信息
    作者简介:

    王乐洋,博士,教授,主要研究方向为大地测量反演及大地测量数据处理。wleyang@163.com

Medium-Long Term Forecasting Method for Earth Rotation Parameters Considering Effective Angular Momentum Information

  • 摘要:

    地球自转参数(Earth rotation parameters, ERP)的预报精度一直是卫星自主导航和深空探测等用户关注的焦点。为了进一步提升用户的满意度,首先将激发域的有效角动量(effective angular momentum, EAM)的拟合残差序列卷积到大地测量观测域,并添加经验调节因子,构造出新的EAM拟合残差序列;然后将ERP和新的EAM拟合残差序列做减法,获得差异序列;最后联合差异序列和新的EAM残差序列的预报值,推出目标ERP序列的预报值。使用由ERP数据驱动的最小二乘外推和自回归(the least square extrapolation and autoregressive,LS+AR)模型,从2012年初到2021年初的预报实验结果显示,在1~ 365 d的预报窗口上,X方向和Y方向的调节因子均为0.7时,分别较传统方法平均提高31.86%和21.00%;日长变化的调节因子为1时,较传统方法平均提升15%。这用数值预报的方式验证了极移短时间尺度的约70%高频变化由EAM激发这一已有结论,并为ERP预报研究提供了参考。

    Abstract:
    Objectives 

    The prediction accuracy of Earth rotation parameters (ERP), as one of the hot spots in geodetic research, has been attracting attention from users such as autonomous satellite navigation and deep space exploration. In order to further satisfy the users' requirements, we combine the new effective angular momentum (EAM) data for the ERP prediction study.

    Methods 

    The EAM fitted residual series in the excitation domain is first transferred to the geodetic observation domain, and an empirical adjustment factor is added to construct a new EAM fitted residual series. Then the fitted residual series of ERP and the fitted residual series of the new EAM are subtracted to obtain the difference series. Using the least square extrapolation and autoregressive (LS+AR) models driven by ERP data, prediction experiments are performed for the difference series and the new EAM residual series, respectively, and finally predictions for the target ERP series are jointly introduced.

    Results 

    Based on experiments from the beginning of 2012 to the beginning of 2021, it is shown that an overall better result can be obtained for the adjustment factor of 0.7 in both the X-direction and Y-direction at a prediction horizons of 1-365 days, with an average improvement of 31.86% and 21.00% over the traditional method, respectively. The average improvement over the traditional method is 15% when the adjustment factor of length of day is 1.

    Conclusions 

    This verifies the existing conclusion that about 70% of the high-frequency changes in the short time scale of polar motion are stimulated by EAM by means of numerical prediction, and provides a reference for ERP prediction research.

  • 感谢IERS提供ERP数据,感谢GFZ地球系统建模小组提供EAM数据。

    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20220246

  • 图  1   本文方法的流程图

    Figure  1.   Flowchart of the Proposed Method

    图  2   本文方法、传统方法和IERS公报A的MAE对比

    Figure  2.   MAE Comparison of the Proposed Method, Traditional Method and IERS Bulletin A

    图  3   本文方法的最佳阶数P

    Figure  3.   Optimum Order P Figure of the Proposed Method

    图  4   本文方法和传统方法的AE图

    Figure  4.   AE Figures of the Proposed Method and Traditional Method

    表  1   本文的预报方案

    Table  1   Prediction Schemes of This Paper

    预报方案调节因子输入数据的长度
    方案11极移是3~10 aLOD是18 a
    方案20.2
    方案30.4
    方案40.6
    方案50.7
    方案60.8
    方案70.9
    传统方法0
    IERS公报A
    下载: 导出CSV

    表  2   本文方法、传统方法和IERS 公报A的MAE

    Table  2   MAE Values of the Proposed Method, Traditional Method and Bulletin A

    ERP方案不同时间窗口的MAE
    1 d30 d60 d90 d120 d150 d180 d240 d300 d365 d
    X/m(″)方案1 (5 a)0.1837.11812.31715.69217.58318.23718.01619.51622.09422.531
    方案5 (5 a)0.1817.03312.06015.29516.68017.01916.84818.87620.83420.947
    方案6 (5 a)0.1817.00512.05515.35916.90617.33917.15918.95421.21721.306
    方案7 (5 a)0.1827.04212.11715.45217.13917.73717.69919.39121.73321.891
    传统方法0.1788.22416.60623.49828.13330.05029.71927.91928.96531.222
    IERS公报A0.2706.81111.47214.40516.38817.83318.72621.06022.44923.050
    iMAE传统方法_方案5/%-1.6914.4827.3834.9140.7143.3643.3132.3928.0732.91
    Y/m(″)方案1 (4 a)0.1657.32016.44724.21828.96330.73330.63029.93630.12831.023
    方案2 (4 a)0.1505.81111.39315.32617.47018.34518.83519.04319.29921.387
    方案1 (5 a)0.1657.23016.40424.99930.77233.44933.80733.27534.49535.031
    方案5 (5 a)0.1445.30110.29614.21616.71318.77820.06721.26321.36224.049
    方案6 (5 a)0.1445.36010.50014.54616.88318.97920.29821.46221.81324.769
    方案7 (5 a)0.1465.40710.71314.90617.05118.85320.22921.58022.46425.337
    传统方法0.1485.92612.56019.31324.40527.21427.72524.78925.87428.685
    IERS公报A0.1984.3067.71911.87116.64520.76923.67625.82525.61325.041
    iMAE传统方法_方案5/%2.7010.5518.0326.3931.5231.0027.6214.2217.4416.16
    LOD/ms方案1 (18 a)0.0190.1540.1680.1780.1830.1960.2120.2310.2600.277
    传统方法0.0290.1660.1920.2130.2240.2420.2560.2680.2850.293
    iMAE传统方法_方案1/%32.147.2312.5016.4318.3019.0117.1913.438.425.46
    下载: 导出CSV
  • [1]

    Bizouard C, Gambis D. The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005[M]//Drewes H. Geodetic Reference Frames.Berlin, Heidelberg: Springer, 2009.

    [2]

    Schuh H, Behrend D. VLBI: A Fascinating Technique for Geodesy and Astrometry[J]. Journal of Geodynamics, 2012, 61: 68-80.

    [3]

    Kalarus M, Schuh H, Kosek W, et al. Achievements of the Earth Orientation Parameters Prediction Comparison Campaign[J]. Journal of Geodesy, 2010, 84(10): 587-596.

    [4]

    Xu X Q, Zhou Y H, Liao X H. Short-Term Earth Orientation Parameters Predictions by Combination of the Least-Squares, AR Model and Kalman Filter[J]. Journal of Geodynamics, 2012, 62: 83-86.

    [5]

    Choi K K, Ray J, Griffiths J, et al. Evaluation of GPS Orbit Prediction Strategies for the IGS Ultra-rapid Products[J]. GPS Solutions, 2013, 17(3): 403-412.

    [6]

    Zhu S Y. Prediction of Polar Motion[J]. Bulletin Géodésique, 1982, 56(3): 258-273.

    [7]

    Chao B F. Predictability of the Earth’s Polar Motion[J]. Bulletin Géodésique, 1985, 59(1): 81-93.

    [8]

    Kosek W. Possible Excitation of the Chandler Wobble by Variable Geophysical Annual Cycle[J]. Artificial Satellites, 2004, 39(2): 135-145.

    [9]

    Kosek W, Kalarus M, Niedzielski T. Forecasting of the Earth Orientation Parameters: Comparison of Different Algorithms[J]. Nagoya Journal of Medical Science, 2007, 69(3/4):133-137.

    [10]

    Sun Z Z, Xu T H. Prediction of Earth Rotation Parameters Based on Improved Weighted Least Squares and Autoregressive Model[J]. Geodesy and Geodynamics, 2012, 3(3): 57-64.

    [11]

    Wu F, Deng K Z, Chang G B, et al. The Application of a Combination of Weighted Least-Squares and Autoregressive Methods in Predictions of Polar Motion Parameters[J]. Acta Geodaetica et Geophysica, 2018, 53(2): 247-257.

    [12]

    Xu X Q, Zhou Y H. EOP Prediction Using Least Square Fitting and Autoregressive Filter over Optimized Data Intervals[J]. Advances in Space Research, 2015, 56(10): 2248-2253.

    [13]

    Wu F, Chang G B, Deng K Z, et al. Selecting Data for Autoregressive Modeling in Polar Motion Prediction[J]. Acta Geodaetica et Geophysica, 2019, 54(4): 557-566.

    [14] 张昊, 王琪洁, 朱建军, 等. 对钱德勒参数进行时变修正的CLS+AR模型在极移预测中的应用[J]. 武汉大学学报(信息科学版), 2012, 37(3): 286-289.

    Zhang Hao, Wang Qijie, Zhu Jianjun, et al. Application of CLS+AR Model Polar Motion to Prediction Based on Time-Varying Parameters Correction of Chandler Wobble[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 286-289.

    [15] 孙张振. 高精度地球自转参数预报模型与算法研究[D]. 威海: 山东大学(威海), 2020.

    Sun Zhangzhen. Research on High-Precision Prediction Model and Algorithm of Earth Rotation Parameters[D]. Weihai: Shandong University(Weihai), 2020.

    [16]

    Sun Z Z, Xu T H, Jiang C H, et al. An Improved Prediction Algorithm for Earth’s Polar Motion with Considering the Retrograde Annual and Semi-annual Wobbles Based on Least Squares and Autoregressive Model[J]. Acta Geodaetica et Geophysica, 2019, 54(4): 499-511.

    [17] 魏二虎, 杨亚利, 金双根, 等. 利用LS_AR模型对极移参数的中长期预报[J]. 测绘地理信息, 2014, 39(4): 5-9.

    Wei Erhu, Yang Yali, Jin Shuanggen, et al. Improvement of LS_AR Model and Long-Term Forecast of Polar Motion[J]. Journal of Geomatics, 2014, 39(4): 5-9.

    [18] 姚宜斌, 岳顺强, 陈鹏. 一种适用于极移预报的附加误差修正的LS+AR新模型[J]. 中国科学(地球科学), 2013, 43(4): 665-676.

    Yao Yibin, Yue Shunqiang, Chen Peng. A New LS+AR Model with Additional Error Correction for Polar Motion Forecast[J]. Science China: Earth Sciences, 2013, 43(4): 665-676.

    [19] 加松, 徐天河, 杨红雷. LS+AR极移预报模型的两种修正算法[J]. 测绘学报, 2018, 47(S0): 71-77.

    Jia Song, Xu Tianhe, Yang Honglei. Two Improved Algorithms for LS+AR Prediction Model of the Polar Motion[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S0):71-77.

    [20]

    Dill R, Dobslaw H, Thomas M. Improved 90-day Earth Orientation Predictions from Angular Momentum Forecasts of Atmosphere, Ocean, and Terrestrial Hydrosphere[J]. Journal of Geodesy, 2019, 93(3): 287-295.

    [21]

    Brzeziński A. Polar Motion Excitation by Variations of the Effective Angular Momentum Function: Considerations Concerning Deconvolution Problem[J]. Manuscr Geod, 1992, 17(1): 3-20.

    [22]

    Gross R S, Fukumori I, Menemenlis D, et al. Atmospheric and Oceanic Excitation of Length-of-Day Variations During 1980—2000[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1): 7914.

    [23]

    Chen J L, Wilson C R. Hydrological Excitations of Polar Motion, 1993—2002[J]. Geophysical Journal International, 2005, 160(3): 833-839.

    [24]

    Zhou Y H, Chen J L, Liao X H, et al. Oceanic Excitations on Polar Motion: A Cross Comparison Among Models[J]. Geophysical Journal International, 2005, 162(2): 390-398.

    [25]

    Brzeziński A, Nastula J, Kołaczek B. Seasonal Excitation of Polar Motion Estimated from Recent Geophysical Models and Observations[J]. Journal of Geodynamics, 2009, 48(3-5): 235-240.

    [26]

    Chen J L, Wilson C R, Zhou Y H. Seasonal Excitation of Polar Motion[J]. Journal of Geodynamics, 2012, 62: 8-15.

    [27]

    Nastula J, Gross R, Salstein D A. Oceanic Excitation of Polar Motion: Identification of Specific Oceanic Areas Important for Polar Motion Excitation[J]. Journal of Geodynamics, 2012, 62: 16-23.

    [28] 顾震年. 极移的半年振荡和大气激发的贡献[J]. 中国科学院上海天文台年刊,1995, 16:27-34.

    Gu Zhennian. The Semi-annual Oscillation of Pole Motionand Contribution of Atmospheric Excitation[J]. Annals of Shanghai Observatory Academia Sinica, 1995, 16:27-34.

    [29] 谢伯全,郑大伟. 大气对地球自转参数(ERP)的高频激发[J].天文学报, 1996(2): 113-123.

    Xie Boquan, Zheng Dawei. High Frequency Excitation of Earth Rotation Parameters (ERP) from Atmosphere[J]. Acta Astronomica Sinica, 1996(2):113-123.

    [30]

    Chandler S C. On the Variation of Latitude, I[J]. Astronomical Journal, 1891, 11: 59-61.

    [31]

    Sadanori K, Genshiro K. Information Criteria and Statistical Modeling [M]. Tokyo, Japan: Springer Science & Business Media, 2008.

    [32]

    Wilson C R. Discrete Polar Motion Equations[J]. Geophysical Journal International, 1985, 80(2): 551-554.

    [33] 张志. 地球定向参数的预报及其对导航卫星轨道计算的影响研究[D]. 长沙: 国防科技大学, 2018.

    Zhang Zhi. Prediction of Earth Orientation Parameters and Its Effect Research on Orbit Computation of Navigation Satellite[D]. Changsha: National University of Defense Technology, 2018.

    [34]

    Gross R S, Fukumori I, Menemenlis D. Atmospheric and Oceanic Excitation of Decadal-Scale Earth Orientation Variations[J]. Journal of Geophysical Research: Solid Earth, 2005, 110:B09405.

图(4)  /  表(2)
计量
  • 文章访问数:  1021
  • HTML全文浏览量:  153
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 网络出版日期:  2022-10-07
  • 刊出日期:  2024-10-04

目录

    /

    返回文章
    返回