-
摘要: 近年来,卫星大地测量技术的快速发展为精确测量地壳形变和断层行为提供了前所未有的多维观测数据。它与地震学的结合使得地震周期形变监测的时空分辨率大大提升,为更加深入地研究地震周期过程和机理提供了一个窗口,地震大地测量学应运而生。它能够对地壳运动进行定量描述、对断层活动进行精准建模,从而为洞悉整个地震周期过程的应力应变演化提供科学依据,同时为评估地震危险性、实现地震预测预警提供科学指导。以卫星大地测量观测探究断层形变为主线,分析了断层处于地震周期不同阶段的运动学特征(震间、同震和震后),回顾了地震大地测量学在震源物理方面的一些重要发现。研究表明,利用卫星大地测量数据判定断层所处地震周期的阶段是实现地震预测的可行思路。Abstract: In recent years, the rapid development of satellite geodesy provides unprecedented multidimensional observations for the accurate measurement of crustal deformation and fault behavior. Combined with seismology, the temporal and spatial resolution of earthquake cycle deformation monitoring is greatly improved, which provides a chance for further study of earthquake cycle process and mechanism. Seismogeodesy can quantitatively describe the crustal movement and accurately model the fault activity. It can also provide a scientific basis to understand the stress and strain evolution of the whole earthquake cycle process, and provide scientific guidance for the assessment of seismic hazard and earthquake prediction and early warning. This paper analyzes the kinematic characteristics of faults at different stages of the earthquake cycle, including interseismic, coseismic, and postseismic, and reviews some important findings of seismic geodesy in terms of source physics by using satellite geodetic observations to investigate fault deformation. The satellite geodetic data can be applied to determine the fault location in the stage of earthquake cycle. It is a feasible idea for earthquake prediction.
-
Keywords:
- satellite geodesy /
- crustal movement /
- earthquake cycle /
- seismic hazard
-
致谢: 感谢陈鑫连先生九十诞辰组委会的邀请,谨以此文纪念陈鑫连先生在相关领域的开创性贡献。
-
-
[1] Segall P, Davis J L. GPS Applications for Geodynamics and Earthquake Studies[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 301-336 doi: 10.1146/annurev.earth.25.1.301
[2] Bürgmann R, Rosen P A, Fielding E J. Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 169-209 doi: 10.1146/annurev.earth.28.1.169
[3] 沈正康. 卫星大地测量用于东亚大陆地球动力学与地震学研究回顾[J]. 地球物理学报, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541 Shen Zhengkang. Satellite Geodesy Applied to Geodynamic and Seismological Studies in East Asia: A Review[J]. Chinese Journal of Geophysics, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541
[4] Elliott J R, Walters R J, Wright T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844 doi: 10.1038/ncomms13844
[5] 瞿伟, 高源, 陈海禄, 等. 利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J]. 地球科学与环境学报, 2021, 43(1): 182-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101013.htm Qu Wei, Gao Yuan, Chen Hailu, et al. Review on Characteristics of Present Crustal Tectonic Movement and Deformation in Qinghai-Tibet Plateau, China Using GPS High Precision Monitoring Data[J]. Journal of Earth Sciences and Environment, 2021, 43(1): 182-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101013.htm
[6] Zhang W T, Ji L Y, Zhu L Y, et al. Current Slip and Strain Rate Distribution Along the Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations[J]. Frontiers in Earth Science, 2022, 10: 821761 doi: 10.3389/feart.2022.821761
[7] 季灵运, 朱良玉, 李宁, 等. 基于大地测量观测的断层运动研究综述[J]. 大地测量与地球动力学, 2017, 37(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708001.htm Ji Lingyun, Zhu Liangyu, Li Ning, et al. Review of Fault Movement Based on Geodetic Observations[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 771-776 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201708001.htm
[8] Guo R M, Zheng Y, Xu J Q. Stress Modulation of the Seismic Gap Between the 2008 Ms 8.0 Wenchuan Earthquake and the 2013 Ms 7.0 Lushan Earthquake and Implications for Seismic Hazard[J]. Geophysical Journal International, 2020, 221(3): 2113-2125 doi: 10.1093/gji/ggaa143
[9] Feigl K L, Thatcher W. Geodetic Observations of Post-Seismic Transients in the Context of the Earthquake Deformation Cycle[J]. Comptes Rendus Geoscience, 2006, 338(14/15): 1012-1028
[10] Zheng Y, Guo R M. Earthquake Potential of the Seismic Gap Between the Wenchuan and Lushan Earthquakes: Current Status, Thoughts, and Challenges[J]. Science China Earth Sciences, 2021, 64(3): 503-506 doi: 10.1007/s11430-020-9719-y
[11] Lindsey E O, Mallick R, Hubbard J A, et al. Slip Rate Deficit and Earthquake Potential on Shallow Megathrusts[J]. Nature Geoscience, 2021, 14(5): 321-326 doi: 10.1038/s41561-021-00736-x
[12] Fialko Y. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System[J]. Nature, 2006, 441(7096): 968-971 doi: 10.1038/nature04797
[13] 邹镇宇, 江在森, 武艳强, 等. 利用带倾角断层形变公式研究川滇块体东边界断裂带形变特征[J]. 武汉大学学报·信息科学版, 2018, 43(11): 1688-1695 doi: 10.13203/j.whugis20160415 Zou Zhenyu, Jiang Zaisen, Wu Yanqiang, et al. Deformation Characteristics of the Eastern Boundary Fault Zone of Sichuan-Yunnan Block Using the Deformation Formula of Seismic Fault with Dip Angle[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1688-1695 doi: 10.13203/j.whugis20160415
[14] Meade B J. Block Models of Crustal Motion in Southern California Constrained by GPS Measurements[J]. Journal of Geophysical Research, 2005, 110: B03403
[15] Wang K L, Zhu Y J, Nissen E, et al. On the Relevance of Geodetic Deformation Rates to Earthquake Potential[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093231
[16] Diao F Q, Xiong X, Wang R J, et al. Slip Rate Variation Along the Kunlun Fault (Tibet): Results from New GPS Observations and a Viscoelastic Earthquake-Cycle Deformation Model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533 doi: 10.1029/2019GL081940
[17] Guo R M, Zheng Y, Tian W, et al. Locking Status and Earthquake Potential Hazard Along the Middle-South Xianshuihe Fault[J]. Remote Sensing, 2018, 10(12): 2048 doi: 10.3390/rs10122048
[18] Daout S, Jolivet R, Lasserre C, et al. Along-Strike Variations of the Partitioning of Convergence Across the Haiyuan Fault System Detected by InSAR[J]. Geophysical Journal International, 2016, 205(1): 536-547 doi: 10.1093/gji/ggw028
[19] Jolivet R, Lasserre C, Doin M P, et al. Shallow Creep on the Haiyuan Fault (Gansu, China) Revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): e2000JB008732
[20] Guo R M, Yang H F, Li Y, et al. Complex Slip Distribution of the 2021 Mw 7.4 Maduo, China, Earthquake: An Event Occurring on the Slowly Slipping Fault[J]. Seismological Research Letters, 2022, 93(2A): 653-665 doi: 10.1785/0220210226
[21] Meade B J, Klinger Y, Hetland E A. Inference of Multiple Earthquake-Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2824-2835 doi: 10.1785/0120130006
[22] Wang K L, Hu Y, He J H. Deformation Cycles of Subduction Earthquakes in a Viscoelastic Earth[J]. Nature, 2012, 484(7394): 327-332 doi: 10.1038/nature11032
[23] Hilley G E, Johnson K M, Wang M, et al. Earthquake-Cycle Deformation and Fault Slip Rates in Northern Tibet[J]. Geology, 2009, 37(1): 31-34 doi: 10.1130/G25157A.1
[24] Chuang R Y, Johnson K M. Reconciling Geologic and Geodetic Model Fault Slip-Rate Discrepancies in Southern California: Consideration of Nonsteady Mantle Flow and Lower Crustal Fault Creep[J]. Geo-logy, 2011, 39(7): 627-630
[25] Bruhat L, Segall P. Deformation Rates in Northern Cascadia Consistent with Slow Updip Propagation of Deep Interseismic Creep[J]. Geophysical Journal International, 2017, 211(1): 427-449 doi: 10.1093/gji/ggx317
[26] Lay T, Kanamori H. An Asperity Model of Large Earthquake Sequences[M]//Earthquake Prediction: An International Review. Washington DC: American Geophysical Union, 1981: 579–592
[27] Guo R M, Zheng Y, An C, et al. The 2018 Mw 7.9 Offshore Kodiak, Alaska, Earthquake: An Unusual Outer Rise Strike-Slip Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB019267
[28] Yue H, Lay T, Koper K D. En Échelon and Orthogonal Fault Ruptures of the 11 April 2012 Great Intraplate Earthquakes[J]. Nature, 2012, 490(7419): 245-249 doi: 10.1038/nature11492
[29] An C, Yue H, Sun J B, et al. The 2015 Mw 8.3 Illapel, Chile, Earthquake: Direction-Reversed Along-Dip Rupture with Localized Water Reverberation[J]. Bulletin of the Seismological Society of America, 2017, 107(5): 2416-2426 doi: 10.1785/0120160393
[30] Yao H J, Gerstoft P, Shearer P M, et al. Compressive Sensing of the Tohoku-Oki Mw 9.0 Earthquake: Frequency-Dependent Rupture Modes[J]. Geophysical Research Letters, 2011, 38.
[31] Tang X W, Guo R M, Xu J Q, et al. Probing the Fault Complexity of the 2017 Ms 7.0 Jiuzhaigou Earthquake Based on the InSAR Data[J]. Remote Sensing, 2021, 13(8): 1573 doi: 10.3390/rs13081573
[32] Guo R M, Yang H F, Zhu Y F, et al. Narrow Rupture of the 2020 Mw 7.4 La Crucecita, Mexico, Earthquake[J]. Seismological Research Letters, 2021, 92(3): 1891-1899 doi: 10.1785/0220200328
[33] 许才军, 邓长勇, 周力璇. 利用方差分量估计的地震同震滑动分布反演[J]. 武汉大学学报·信息科学版, 2016, 41(1): 37-44 doi: 10.13203/j.whugis20150500 Xu Caijun, Deng Changyong, Zhou Lixuan. Coseismic Slip Distribution Inversion Method Based on the Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 37-44 doi: 10.13203/j.whugis20150500
[34] Ji C. Source Description of the 1999 Hector Mine, California, Earthquake, Part Ⅰ: Wavelet Domain Inversion Theory and Resolution Analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-1207 doi: 10.1785/0120000916
[35] Hayes G P. The Finite, Kinematic Rupture Properties of Great-Sized Earthquakes Since 1990[J]. Earth and Planetary Science Letters, 2017, 468: 94-100 doi: 10.1016/j.epsl.2017.04.003
[36] Hartzell S, Mendoza C, Ramirez-Guzman L, et al. Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake: Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 353-370 doi: 10.1785/0120120108
[37] Yue H, Zhang Y, Ge Z X, et al. Resolving Rupture Processes of Great Earthquakes: Reviews and Perspective from Fast Response to Joint Inversion[J]. Science China Earth Sciences, 2020, 63(4): 492-511 doi: 10.1007/s11430-019-9549-1
[38] Xu C, Liu Y, Wen Y, et al. Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2736-2749 doi: 10.1785/0120090253
[39] Shen Z K, Sun J, Zhang P, et al. Slip Maxima at Fault Junctions and Rupturing of Barriers During the 2008 Wenchuan Earthquake[J]. Nature Geoscience, 2009, 2(10): 718-724 doi: 10.1038/ngeo636
[40] Guo R M, Zheng Y, Diao F Q, et al. Rupture Model of the 2013 Mw 6.6 Lushan (China) Earthquake Constrained by a New GPS Data Set and Its Effects on Potential Seismic Hazard[J]. Earthquake Science, 2018, 31(3): 117-125 doi: 10.29382/eqs-2018-0117-1
[41] Yang H F, Wang D, Guo R M, et al. Rapid Report of the 8 January 2022 Ms 6.9 Menyuan Earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022, 2(1): 100113 doi: 10.1016/j.eqrea.2022.100113
[42] Bürgmann R, Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567 doi: 10.1146/annurev.earth.36.031207.124326
[43] Barbot S, Fialko Y. A Unified Continuum Representation of Post-Seismic Relaxation Mechanisms: Semi-Analytic Models of Afterslip, Poroelastic Rebound and Viscoelastic Flow[J]. Geophysical Journal International, 2010, 182(3): 1124-1140 doi: 10.1111/j.1365-246X.2010.04678.x
[44] 李志才, 许才军, 张鹏, 等. 顾及地壳粘弹性结构的地震断层震后形变反演分析[J]. 武汉大学学报·信息科学版, 2014, 39(12): 1477-1481 http://ch.whu.edu.cn/article/id/3144 Li Zhicai, Xu Caijun, Zhang Peng, et al. Post-Seismic Deformation Inversion of Seismic Fault Considering the Crustal Viscoelastic Structure[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1477-1481 http://ch.whu.edu.cn/article/id/3144
[45] Bedford J, Moreno M, Li S Y, et al. Separating Rapid Relocking, Afterslip, and Viscoelastic Relaxation: An Application of the Postseismic Straightening Method to the Maule 2010 CGPS[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7618-7638 doi: 10.1002/2016JB013093
[46] Marone C J, Scholtz C H, Bilham R. On the Mechanics of Earthquake Afterslip[J]. Journal of Geophysical Research, 1991, 96(B5): 8441 doi: 10.1029/91JB00275
[47] Guo R M, Zheng Y, Xu J Q, et al. Seismic and Aseismic Fault Slip Associated with the 2017 Mw 8.2 Chiapas, Mexico, Earthquake Sequence[J]. Seismological Research Letters, 2019, 90(3): 1111-1120 doi: 10.1785/0220180262
[48] He L J, Feng G C, Wu X X, et al. Coseismic and Early Postseismic Slip Models of the 2021 Mw 7.4 Maduo Earthquake (Western China) Estimated by Space-Based Geodetic Data[J]. Geophysical Research Letters, 2021, 48(24): e2021GL095860
[49] Barbot S, Fialko Y, Bock Y. Postseismic Deformation Due to the Mw 6.0 2004 Parkfield Earthquake: Stress-Driven Creep on a Fault with Spatially Variable Rate-and-State Friction Parameters[J]. Journal of Geophysical Research, 2009, 114: B07405
[50] Tian Z, Freymueller J T, Yang Z Q. Postseismic Deformation Due to the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig Earthquakes and Its Implications for Regional Rheological Structure[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB020197
[51] Wang K, Fialko Y. Observations and Modeling of Coseismic and Postseismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 761-779 doi: 10.1002/2017JB014620
[52] Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8376-8401 doi: 10.1002/2017JB014366
[53] Johnson K M, Fukuda J, Segall P. Challenging the Rate-State Asperity Model: Afterslip Following the 2011 M 9 Tohoku-Oki, Japan, Earthquake[J]. Geophysical Research Letters, 2012, 39(20): 2012GL052901
[54] Shrivastava M N, González G, Moreno M, et al. Coseismic Slip and Afterslip of the 2015 Mw 8.3 Illapel (Chile) Earthquake Determined from Continuous GPS Data[J]. Geophysical Research Letters, 2016, 43: 710-719
[55] Sun T, Wang K L, Iinuma T, et al. Prevalence of Viscoelastic Relaxation After the 2011 Tohoku-Oki Earthquake[J]. Nature, 2014, 514(7520): 84-87 doi: 10.1038/nature13778
[56] Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2014, 396: 88-96 doi: 10.1016/j.epsl.2014.04.003
[57] Guo R M, Zheng Y, Xu J Q, et al. Transient Viscosity and Afterslip of the 2015 Mw 8.3 Illapel, Chile, Earthquake[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2567-2581 doi: 10.1785/0120190114
[58] Freed A M. Afterslip (and only Afterslip) Following the 2004 Parkfield, California, Earthquake[J]. Geophysical Research Letters, 2007, 34(6): L06312
[59] Jónsson S, Segall P, Pedersen R, et al. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients[J]. Nature, 2003, 424(6945): 179-183 doi: 10.1038/nature01776
[60] Peltzer G, Rosen P, Rogez F, et al. Poroelastic Rebound Along the Landers 1992 Earthquake Surface Rupture[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30131-30145 doi: 10.1029/98JB02302
[61] Wang R J, Kümpel H J. Poroelasticity: Efficient Modeling of Strongly Coupled, Slow Deformation Processes in a Multilayered Half-Space[J]. Geophysics, 2003, 68(2): 705-717 doi: 10.1190/1.1567241
[62] Yang H Z, Guo R M, Zhou J C, et al. Transient Poroelastic Response to Megathrust Earthquakes: A Look at the 2015 Mw 8.3 Illapel, Chile, Event[J]. Geophysical Journal International, 2022, 230(2): 908-915 doi: 10.1093/gji/ggac099
[63] Hu Y, Bürgmann R, Freymueller J T, et al. Contributions of Poroelastic Rebound and a Weak Volcanic Arc to the Postseismic Deformation of the 2011 Tohoku Earthquake[J]. Earth, Planets and Space, 2014, 66: 106 doi: 10.1186/1880-5981-66-106