Signal Extraction and Physical Mechanism Analysis of the Seasonal Vertical Displacement in North China
-
摘要: 华北地区地表垂直位移呈现显著的季节性波动。为探究其驱动源信号,利用独立分量分析方法对全球导航定位系统20个基准站的垂直位移时间序列进行时空分解,获取前6个独立分量,并与环境负载造成的垂直位移进行比较分析。结果表明,第一个独立分量呈现显著周年变化和相对均匀的空间响应,与大气负载位移时间序列的平均相关系数为0.60,两者吻合良好。第二和第三个独立分量均是周年和年内信号的组合,其空间响应反映出局部集聚特征,与华北地区水资源的分布状况相类似,合并这两个独立分量后与水文负载位移时间序列的平均相关系数为0.50。由此表明大气和水文负载是驱动华北地区季节性垂直位移的主要源信号。Abstract:Objectives North China is an important social and economic area in China but suffers from severe surface deformation. Monitoring the surface displacement effectively and timely can provide data basis for understanding the deformation mechanism and predicting disasters. However, the surface vertical displacement in North China shows significant seasonal fluctuations. Hence, this paper aims to analyze the spatiotemporal feature of seasonal vertical displacement and determine the driving sources.Methods Firstly, the vertical time series of 20 global navigation satellite system (GNSS) stations from January 2011 to November 2019 are decomposed by independent component analysis. Secondly, the first six independent components (ICs) are derived and compared with the vertical displacements caused by environmental loadings.Results The results show that GNSS-IC1 presents obvious annual variation, as well as a relative uniform spatial response, which is highly consistent with the displacement time series derived from atmospheric loading, and the average correlation coefficient at all stations is 0.60. GNSS-IC2 and GNSS-IC3 are both the mixed signals constrained by annual and intra-annual periods, while the spatial responses reflect locally clustered characteristics, which corresponds to the distribution of water resources in North China. After combining GNSS-IC2 and GNSS-IC3 as GNSS-IC2/3, the average correlation coefficient between GNSS-IC2/3 and the hydrological loading displacement time series at all stations is 0.50.Conclusions The temporal component of each IC is generally less clustered by different time cycles and the spatial response shows distinct localized characteristics. Atmospheric and hydrological loadings are the primary driving sources of seasonal vertical displacement in North China. However, the seasonal displacements induced by other effects, including non-tide ocean loading and thermal expansion effect of bedrock and observation pillar, are not extracted and need further analysis.
-
-
-
[1] Wang L S, Chen C, Du J S, et al. Detecting Seasonal and Long-Term Vertical Displacement in the North China Plain Using GRACE and GPS[J]. Hydrology and Earth System Sciences, 2017, 21(6): 2905-2922 doi: 10.5194/hess-21-2905-2017
[2] Li S Y, Shen W B, Pan Y J, et al. Surface Seasonal Mass Changes and Vertical Crustal Deformation in North China from GPS and GRACE Measurements[J]. Geodesy and Geodynamics, 2020, 11(1): 46-55 doi: 10.1016/j.geog.2019.05.002
[3] Pang Y J, Wu B, Cao Y P, et al. Spatiotemporal Changes in Terrestrial Water Storage in the Beijing-Tianjin Sandstorm Source Region from GRACE Satellites[J]. International Soil and Water Conservation Research, 2020, 8(3): 295-307 doi: 10.1016/j.iswcr.2020.06.004
[4] 姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2112-2123 doi: 10.13203/j.whugis20180333 Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123 doi: 10.13203/j.whugis20180333
[5] Yan J, Dong D N, Bürgmann R, et al. Separation of Sources of Seasonal Uplift in China Using Independent Component Analysis of GNSS Time Series[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11951-11971 doi: 10.1029/2019JB018139
[6] Chang X. Reconstruction of Gappy GPS Coordinate Time Series Using Empirical Orthogonal Functions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 9020-9033 doi: 10.1002/2016JB013188
[7] Dong D, Fang P, Bock Y, et al. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B03405
[8] Shen Y Z, Li W W, Xu G C, et al. Spatiotemporal Filtering of Regional GNSS Network̓s Position Time Series with Missing Data Using Principle Component Analysis[J]. Journal of Geodesy, 2014, 88(1): 1-12 doi: 10.1007/s00190-013-0663-y
[9] Khazraei S M, Amiri-Simkooei A R. On the Application of Monte Carlo Singular Spectrum Analysis to GPS Position Time Series[J]. Journal of Geodesy, 2019, 93(9): 1401-1418 doi: 10.1007/s00190-019-01253-x
[10] Ming F, Yang Y X, Zeng A M, et al. Spatiotemporal Filtering for Regional GPS Network in China Using Independent Component Analysis[J]. Journal of Geodesy, 2017, 91(4): 419-440 doi: 10.1007/s00190-016-0973-y
[11] Hyvärinen A, Oja E. Independent Component Ana-lysis: Algorithms and Applications[J]. Neural Networks: The Official Journal of the International Neural Network Society, 2000, 13(4/5): 411-430
[12] Forootan E, Kusche J. Separation of Global Time-Variable Gravity Signals into Maximally Independent Components[J]. Journal of Geodesy, 2012, 86(7): 477-497 doi: 10.1007/s00190-011-0532-5
[13] 王海波, 游为, 范东明, 等. 利用ICA方法提取奥卡万戈三角洲水储量变化信号[J]. 武汉大学学报·信息科学版, 2022, 47(1): 93-103 doi: 10.13203/j.whugis20190278 Wang Haibo, You Wei, Fan Dongming, et al. Using ICA to Extract the Water Storage Variations Signals of the Okavango Delta[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 93-103 doi: 10.13203/j.whugis20190278
[14] 侯争, 郭增长, 杜久升. 小尺度区域GNSS网三种时空滤波方法研究[J]. 测绘科学, 2018, 43(7): 135-140 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201807021.htm Hou Zheng, Guo Zengchang, Du Jiusheng. Research on Three Spatial-Temporal Filtering Methods for Small Scale Regional GNSS Network[J]. Science of Surveying and Mapping, 2018, 43(7): 135-140 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201807021.htm
[15] 李斐, 李文浩, 张胜凯, 等. 基于独立分量分析的南极半岛GNSS网区域滤波[J]. 地球物理学报, 2019, 62(9): 3279-3295 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909007.htm Li Fei, Li Wenhao, Zhang Shengkai, et al. Spatiotemporal Filtering for Regional GNSS Network in Antarctic Peninsula Using Independent Component Analysis[J]. Chinese Journal of Geophysics, 2019, 62(9): 3279-3295 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909007.htm
[16] 王陈燕, 游为, 范东明. 利用独立成分分析检测2004年和2012年印度洋地震的重力变化[J]. 地球物理学报, 2019, 62(11): 4142-4155 doi: 10.6038/cjg2019M0348 Wang Chenyan, You Wei, Fan Dongming. Using Independent Component Analysis to Detect the Gravity Changes in the Indian Ocean Earthquakes of 2004 and 2012[J]. Chinese Journal of Geophysics, 2019, 62(11): 4142-4155 doi: 10.6038/cjg2019M0348
[17] Wahr J, Molenaar M, Bryan F. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229 doi: 10.1029/98JB02844
[18] Kusche J, Schrama E J O. Surface Mass Redistribution Inversion from Global GPS Deformation and Gravity Recovery and Climate Experiment (GRACE) Gravity Data[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B09409
[19] Liu B, Dai W J, Liu N. Extracting Seasonal Deformations of the Nepal Himalaya Region from Vertical GPS Position Time Series Using Independent Component Analysis[J]. Advances in Space Research, 2017, 60(12): 2910-2917 doi: 10.1016/j.asr.2017.02.028
[20] Dill R, Dobslaw H. Numerical Simulations of Global-Scale High-Resolution Hydrological Crustal Deformations[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 5008-5017 doi: 10.1002/jgrb.50353
[21] Loomis B D, Rachlin K E, Wiese D N, et al. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change[J]. Geophysical Research Letters, 2020, 47(3): e2019GL085488
[22] Chen J L, Wilson C R, Tapley B D, et al. 2005 Drought Event in the Amazon River Basin as Measured by GRACE and Estimated by Climate Models[J]. Journal of Geophysical Research, 2009, 114: B05404
[23] Rodell M, Houser P, Jambor U. The Global Land Data Assimilation System[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394 doi: 10.1175/BAMS-85-3-381
[24] Feng T F, Shen Y Z, Wang F W. Independent Component Extraction from the Incomplete Coordinate Time Series of Regional GNSS Networks[J]. Sensors, 2021, 21(5): 1569 doi: 10.3390/s21051569
[25] 曹艳萍, 秦奋, 庞营军, 等. 2002—2016年华北平原植被生长状况及水文要素时空特征分析[J]. 生态学报, 2019, 39(5): 1560-1571 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201905008.htm Cao Yanping, Qin Fen, Pang Yingjun, et al. Spatiotemporal Changes in Vegetation and Hydrological Factors in the North China Plain from 2002 to 2016[J]. Acta Ecologica Sinica, 2019, 39(5): 1560-1571 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201905008.htm
[26] Feng T F, Shen Y Z, Chen Q J, et al. Groundwater Storage Change and Driving Factor Analysis in North China Using Independent Component Decomposition[J]. Journal of Hydrology, 2022, 609: 127708 doi: 10.1016/j.jhydrol.2022.127708
[27] Guo H P, Zhang Z C, Cheng G M, et al. Groundwater-Derived Land Subsidence in the North China Plain[J]. Environmental Earth Sciences, 2015, 74(2): 1415-1427 doi: 10.1007/s12665-015-4131-2
-
期刊类型引用(30)
1. 刘焱雄,陈义兰,杨龙,高珊. 基于测绘学角度探讨海岸线及其测定方法. 海洋科学进展. 2024(03): 425-436 . 百度学术
2. 王继鹏,金云智,辛忠华,吉才宇,郭龙. 基于PSO-BP的北斗卫星导航海底高程拟合技术的研究. 天然气与石油. 2024(06): 153-160 . 百度学术
3. 付五洲,许宝华,陆彬,李涛. 重力场模型在长江口岛礁垂直基准建立中的应用. 现代测绘. 2023(04): 57-60 . 百度学术
4. 王双喜,肖强,孙雪洁. 复杂海域高精度海底地形测量关键问题研究. 海洋技术学报. 2022(01): 7-12 . 百度学术
5. 周颖,王瑞. 远海PPK测量潮位用于深度基准面计算的研究. 港工技术. 2022(02): 23-26 . 百度学术
6. 柯灝,赵建虎,周丰年,吴敬文,暴景阳,赵祥伟,谢朋朋. 联合大地水准面、海面地形和潮波运动数值模拟的长江口陆海垂直基准转换关系. 武汉大学学报(信息科学版). 2022(05): 731-737+746 . 百度学术
7. 单瑞,李浩军,刘慧敏,赵钊,董凌宇,杜凯. GNSS PPP/INS紧组合模式下的远海无验潮水深测量. 海洋地质前沿. 2022(10): 87-93 . 百度学术
8. 张颖,闫玉茹,章家保,李静,裘露露. 潮滩冲淤观测技术发展现状. 海洋科学. 2021(03): 152-162 . 百度学术
9. 王森,刘立龙,黄良珂,周威. 基于潮汐调和分析的全球定位系统-多路径反射测量技术潮位预报. 科学技术与工程. 2021(09): 3481-3486 . 百度学术
10. 魏荣灏,陈佳兵,徐达. 基于PPK无验潮的水下地形测量技术研究. 海洋技术学报. 2021(01): 57-62 . 百度学术
11. 王挺,王萃. GNSS-PPK在远距离潮位观测的应用研究. 江西测绘. 2021(04): 8-11 . 百度学术
12. 王正杰,王峰,吴自银,曹振轶,罗孝文,李守军. 基于GPS PPK技术确定测深点瞬时潮位及分析. 海洋技术学报. 2020(02): 58-63 . 百度学术
13. 王小刚,赵薛强,许军. 珠江口瞬时水位解算方法研究及应用. 水利水电技术. 2020(11): 117-124 . 百度学术
14. 梁冠辉,陶常飞,周兴华,周东旭,王朝阳. 新型远距离验潮系统集成设计与研制. 海洋科学进展. 2019(01): 129-139 . 百度学术
15. 王智明,孙月文. 无验潮模式下的宁波杭州湾水下地形测量. 城市勘测. 2019(02): 157-159 . 百度学术
16. 陈正伟,韩磊. 基于高精度GNSS定位解算及姿态数据获取潮位研究. 海洋技术学报. 2019(05): 55-59 . 百度学术
17. 李梦昊,王胜利,高兴国,陈冠旭,刘焱雄. 基于混合编程的实时精密单点定位方法. 海岸工程. 2018(01): 66-73 . 百度学术
18. 黄辰虎,陆秀平,边刚,黄贤源,管明雷,翟国君,黄谟涛. 中短期验潮站验潮零点不规则漂移精密处理. 武汉大学学报(信息科学版). 2018(11): 1673-1680 . 百度学术
19. Yuanxi YANG,Tianhe XU,Shuqiang XUE. Progresses and Prospects of Marine Geodetic Datum and Marine Navigation in China. Journal of Geodesy and Geoinformation Science. 2018(01): 16-24 . 必应学术
20. 臧建飞,范士杰,易昌华,秦学彬,华亮,麻德明. 实时精密单点定位的远海实时GPS潮汐观测. 测绘科学. 2017(06): 155-160 . 百度学术
21. 臧建飞,范士杰,易昌华,秦学彬,陈冠旭,华亮. 远海实时GPS潮汐的实时精密单点定位观测. 测绘科学. 2017(08): 79-84 . 百度学术
22. 杨元喜,徐天河,薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望. 测绘学报. 2017(01): 1-8 . 百度学术
23. 赵建虎,欧阳永忠,王爱学. 海底地形测量技术现状及发展趋势. 测绘学报. 2017(10): 1786-1794 . 百度学术
24. 王朝阳,周兴华,李延刚,梁冠辉,付延光. 远距离GNSS潮位测量精度的影响因素研究. 海洋技术学报. 2017(03): 1-6 . 百度学术
25. 辛保稳,李友龙. GPS PPK技术在海底地形测量中的应用. 科技展望. 2017(18): 161 . 百度学术
26. 杨涛,葛俊洁,李路. GPS测量技术及其在工程测量中的应用. 电子测试. 2016(06): 126+125 . 百度学术
27. 暴景阳,翟国君,许军. 海洋垂直基准及转换的技术途径分析. 武汉大学学报(信息科学版). 2016(01): 52-57 . 百度学术
28. 周东旭,周兴华,梁冠辉,王朝阳,杨磊. GPS浮标天线高的动态标定方法. 测绘科学. 2015(12): 121-124 . 百度学术
29. 赵建虎,王爱学. 精密海洋测量与数据处理技术及其应用进展. 海洋测绘. 2015(06): 1-7 . 百度学术
30. 赵元元,殷行. 土地测量中GPS实时动态技术的应用研究. 价值工程. 2015(20): 161-162 . 百度学术
其他类型引用(6)