利用非线性高斯-赫尔默特模型与抗差估计的点云拟合方法

Point Cloud Fitting Method Using the Nonlinear Gauss-Helmert Model and Robust Estimation

  • 摘要: 目前已有的点云拟合方法大多是在线性的高斯-马尔可夫(Gauss-Markov,GM)或变量误差(errors-in-variables,EIV)模型基础上提出的,无法严格适用于非线性的曲面拟合问题。将点云拟合的数学模型统一抽象为更具一般性的非线性高斯-赫尔默特(Gauss-Helmert,GH)模型,并针对数据存在粗差的情况,引入等价权抗差方案,提出了一种基于抗差非线性GH(robust nonlinear GH,RGH)模型的点云拟合方法。该方法首先从原始观测值的误差出发,将导出的点坐标的协方差阵作为先验随机模型,然后利用标准化残差和中位数构造权函数,进行抗差迭代计算。结果表明,当数据包含粗差时,RGH模型获得的球面仿真数据的参数均方根误差分别仅为随机抽样一致性(random sample consensus,RANSAC)算法的25.77%~30.67%,实测数据的参数标准差分别仅为RANSAC方法的4.63%~5.49%,验证了所提方法在点云拟合的精度和稳健性方面具有显著优势。

     

    Abstract:
    Objectives Currently, most of the existing point cloud fitting methods are based on linear Gauss-Markov (GM) or errors-in-variables (EIV) models, which cannot be strictly applied to nonlinear surface fitting problems. The mathematical model of point cloud fitting is abstracted as a more general nonlinear Gauss-Helmert (GH) model. To deal with the case when there exist outliers in the dataset, we further introduce an equivalent weight scheme and propose a point cloud fitting method based on robust nonlinear Gauss-Helmert (RGH) model.
    Methods In this method, the covariance matrices of point coordinates derived from the errors of the original observations are treated as the prior random model, and the weight function is constructed using standardized residuals and median to carry out the robust iterative calculation.
    Results Under the conditions with outliers, the root mean square errors of parameters for the simulated sphere data obtained by RGH model are only 25.77%-30.67% of those from random sample consensus (RANSAC) method, and the standard deviations of parameters for the real data are only 4.63%-5.49% of those from RANSAC method, respectively.
    Conclusions The experimental results demonstrate the significant advantages of the proposed method in terms of the accuracy and robustness of point cloud fitting.

     

/

返回文章
返回