Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method
-
摘要: 为了进一步提高冬小麦产量估测的精度,基于集合卡尔曼滤波算法和粒子滤波(particle filter, PF)算法,对CERES–Wheat模型模拟的冬小麦主要生育期条件植被温度指数(vegetation temperature condition index,VTCI)、叶面积指数(leaf area index, LAI)和中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer, MODIS)数据反演的VTCI、LAI进行同化,利用主成分分析与Copula函数结合的方法构建单变量和双变量的综合长势监测指标,建立冬小麦单产估测模型,并通过对比分析选择最优模型,对2017—2020年关中平原的冬小麦单产进行估测。结果表明,单点尺度的同化VTCI、同化LAI均能综合反映MODIS观测值和模型模拟值的变化特征,且PF算法具有更好的同化效果;区域尺度下利用PF算法得到的同化VTCI和LAI所构建的双变量估产模型精度最高,与未同化VTCI和LAI构建的估产模型精度相比,研究区各县(区)的冬小麦估测单产与实际单产的均方根误差降低了56.25 kg/hm2,平均相对误差降低了1.51%,表明该模型能有效提高产量估测的精度,应用该模型进行大范围的冬小麦产量估测具有较好的适用性。Abstract:Objectives Accurate, timely and effective monitoring of the growth and yield of winter wheat over a large area can help optimize the wheat planting structure, adjust the regional layout and ensure the country's food security. Therefore, it is very important to further improve the estimation accuracy of winter wheat yield.Methods Vegetation temperature condition index (VTCI) and leaf area index (LAI) at the main growth period of winter wheat, which were simulated by the CERES (crop environment resource synthesis)-Wheat model and retrieved from MODIS (moderate resolution imaging spectroradiometer) data, were assimilated by using ensemble Kalman filtering (EnKF) algorithm and particle filtering (PF) algorithm. In addition, the principal component analysis combined with the Copula function was used to develop univariate (VTCI or LAI) and bi-variate (VTCI and LAI) winter wheat yield estimation models, and the optimal model was selected to estimate winter wheat yields from 2017 to 2020.Results The experimental results show that, at the sampling-sites scale, both VTCI and LAI after assimilated can comprehensively reflect the variation characteristics of MODIS observed and model simulated values, and the application of PF algorithm has a better assimilation effect. At the regional scale, the bivariate yield estimation model developed by using PF algorithm has the highest accuracy. Compared with the accuracy of the models constructed by VTCI and LAI without assimilation, the root mean square error of the optimal assimilation model is reduced by 56.25 kg/hm2, and the average relative error is reduced by 1.51%.Conclusions The above results indicate that the model can effectively improve the accuracy of winter wheat yield estimation and has good applicability for large area yield estimation.
-
-
表 1 关中平原冬小麦的遗传参数取值
Table 1 Genetic Coefficients of Winter Wheat in the Guanzhong Plain
遗传参数 定义 标定值 P1V/d 春化作用系数 46 P1D/% 光周期系数 68 P5/(℃·d) 灌浆期积温 500 G1/g 开花期单位冠层重量的籽粒数 29 G2/mg 最佳条件下标准籽粒质量 29 G3/g 成熟期非胁迫下单株茎穗标准干质量 2 PHINT/(℃·d) 完成一片叶生长所需积温 90 表 2 基于不同同化算法的同化VTCI和LAI精度评价
Table 2 Accuracy Evaluation of Assimilated VTCI and LAI Based on Different Assimilation Algorithms
指标 R2 RMSE EnKF VTCI 0.32 0.16 PF VTCI 0.65 0.12 EnKF LAI 0.45 0.97 m2·m-2 PF LAI 0.72 0.65 m2·m-2 表 3 VTCI和LAI的主成分贡献率
Table 3 Principal Component Contribution Rates of VTCI and LAI
指标 主成分 贡献率/% 累积贡献率/% VTCI 第一主成分 59.15 59.15 第二主成分 30.05 89.20 EnKF VTCI 第一主成分 59.50 59.50 第二主成分 31.25 90.75 PF VTCI 第一主成分 61.88 61.88 第二主成分 27.68 89.56 LAI 第一主成分 88.50 88.50 第二主成分 9.72 98.22 EnKF LAI 第一主成分 92.26 92.26 第二主成分 5.51 97.77 PF LAI 第一主成分 89.08 89.08 第二主成分 8.05 97.13 VTCI+LAI 第一主成分 51.52 51.52 第二主成分 27.74 79.52 第三主成分 11.65 90.91 EnKF VTCI+LAI 第一主成分 59.43 59.43 第二主成分 19.65 79.07 第三主成分 12.13 91.21 PF VTCI+LAI 第一主成分 62.59 62.59 第二主成分 17.15 80.09 第三主成分 10.98 90.72 表 4 冬小麦单产估测模型
Table 4 Winter Wheat Yield Estimation Models
指标 回归模型 决定系数 VTCI Y(V) = 1 547.05V + 3 982.71 0.18 LAI Y(L) = 2 219.71L + 3 293.02 0.52 VTCI+LAI Y(G) = 1 937.77G + 3 404.26 0.45 EnKF VTCI Y(VEnKF) = 1 407.92VEnKF + 3 982.71 0.19 EnKF LAI Y(LEnKF) = 2 161.94LEnKF + 3 313.03 0.53 EnKF VTCI+LAI Y(GEnKF) = 2 178.14GEnKF + 3 303.70 0.54 PF VTCI Y(VPF) = 1 462.60VPF + 3 538.15 0.21 PF LAI Y(LPF) = 2 226.60LPF + 3 277.80 0.55 PF VTCI+LAI Y(GPF) = 2 201.01GPF + 3 286.14 0.55 注:Y表示冬小麦估测单产(kg/hm2);V、VEnKF和VPF分别为综合VTCI、综合VTCI-EnKF和综合VTCI-PF;L、LEnKF和LPF分别为综合LAI、综合LAI-EnKF和综合LAI-PF;G、GEnKF和GPF分别为综合G、综合G-EnKF和综合G-PF -
[1] Lobell D B, Asner G P, Ortiz-Monasterio J I, et al. Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties[J]. Agriculture, Ecosystems & Environment, 2003, 94(2): 205-220
[2] 任建强, 陈仲新, 唐华俊, 等. 基于遥感信息与作物生长模型的区域作物单产模拟[J]. 农业工程学报, 2011, 27(8): 257-264 doi: 10.3969/j.issn.1002-6819.2011.08.045 Ren Jianqiang, Chen Zhongxin, Tang Huajun, et al. Regional Crop Yield Simulation Based on Crop Growth Model and Remote Sensing Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 257-264 doi: 10.3969/j.issn.1002-6819.2011.08.045
[3] 赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277-293 doi: 10.6041/j.issn.1000-1298.2014.12.041 Zhao Chunjiang. Advances of Research and Application in Remote Sensing for Agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 277-293 doi: 10.6041/j.issn.1000-1298.2014.12.041
[4] Wagner M P, Slawig T, Taravat A, et al. Remote Sensing Data Assimilation in Dynamic Crop Models Using Particle Swarm Optimization[J]. ISPRS International Journal of Geo-Information, 2020, 9(2): 105 doi: 10.3390/ijgi9020105
[5] Bai T C, Wang S G, Meng W B, et al. Assimilation of Remotely-Sensed LAI into WOFOST Model with the SUBPLEX Algorithm for Improving the Field-Scale Jujube Yield Forecasts[J]. Remote Sensing, 2019, 11(16): 1945 doi: 10.3390/rs11161945
[6] 刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J]. 武汉大学学报·信息科学版, 2020, 45(2): 265-272 doi: 10.13203/j.whugis20180161 Liu Yating, Gong Yan, Duan Bo, et al. Combining Multi-temporal NDVI and Abundance from UAV Remote Sensing Data for Oilseed Rape Growth Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 265-272 doi: 10.13203/j.whugis20180161
[7] de Wit A, Duveiller G, Defourny P. Estimating Regional Winter Wheat Yield with WOFOST Through the Assimilation of Green Area Index Retrieved from MODIS Observations[J]. Agricultural and Forest Meteorology, 2012, 164: 39-52 doi: 10.1016/j.agrformet.2012.04.011
[8] Huang J X, Gómez-Dans J L, Huang H, et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives[J]. Agricultural and Forest Meteorology, 2019, 276/277: 107609
[9] Mathieu P P, O'Neill A. Data Assimilation: From Photon Counts to Earth System Forecasts[J]. Remote Sensing of Environment, 2008, 112(4): 1258-1267 doi: 10.1016/j.rse.2007.02.040
[10] Chen Y, Tao F L. Improving the Practicability of Remote Sensing Data-Assimilation-Based Crop Yield Estimations over a Large Area Using a Spatial Assimilation Algorithm and Ensemble Assimilation Strategies[J]. Agricultural and Forest Meteorology, 2020, 291: 108082 doi: 10.1016/j.agrformet.2020.108082
[11] Ines A V M, Das N N, Hansen J W, et al. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction[J]. Remote Sensing of Environment, 2013, 138: 149-164 doi: 10.1016/j.rse.2013.07.018
[12] Pan H Z, Chen Z X, Allard D W, et al. Joint Assimilation of Leaf Area Index and Soil Moisture from Sentinel-1 and Sentinel-2 Data into the WOFOST Model for Winter Wheat Yield Estimation[J]. Sensors(Basel, Switzerland), 2019, 19(14): 3161 doi: 10.3390/s19143161
[13] 王鹏新, 龚健雅, 李小文. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报·信息科学版, 2001, 26(5): 412-418 http://ch.whu.edu.cn/article/id/5205 Wang Pengxin, Gong Jianya, Li Xiaowen. Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 412-418 http://ch.whu.edu.cn/article/id/5205
[14] Xie Y, Wang P X, Bai X J, et al. Assimilation of the Leaf Area Index and Vegetation Temperature Condition Index for Winter Wheat Yield Estimation Using Landsat Imagery and the CERES-Wheat Model[J]. Agricultural and Forest Meteorology, 2017, 246: 194-206 doi: 10.1016/j.agrformet.2017.06.015
[15] AghaKouchak A, Cheng L Y, Mazdiyasni O, et al. Global Warming and Changes in Risk of Concurrent Climate Extremes: Insights from the 2014 California Drought[J]. Geophysical Research Letters, 2014, 41(24): 8847-8852 doi: 10.1002/2014GL062308
[16] 李浩鑫, 邵东国, 尹希, 等. 基于主成分分析和Copula函数的灌溉用水效率评价方法[J]. 农业工程学报, 2015, 31(11): 96-102 doi: 10.11975/j.issn.1002-6819.2015.11.014 Li Haoxin, Shao Dongguo, Yin Xi, et al. Evaluation Method for Irrigation-Water Use Efficiency Based on Principle Component Analysis and Copula Function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 96-102 doi: 10.11975/j.issn.1002-6819.2015.11.014
[17] 王鹏新, 冯明悦, 孙辉涛, 等. 基于主成分分析和Copula函数的干旱影响评估研究[J]. 农业机械学报, 2016, 47(9): 334-340 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201609045.htm Wang Pengxin, Feng Mingyue, Sun Huitao, et al. Drought Impact Assessment Based on Principal Component Analysis and Copula Function[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 334-340 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201609045.htm
[18] 李艳, 王鹏新, 刘峻明, 等. 基于条件植被温度指数的冬小麦主要生育时期干旱监测效果评价Ⅲ: 干旱对冬小麦产量的影响评估[J]. 干旱地区农业研究, 2014, 32(5): 218-222 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201405038.htm Li Yan, Wang Pengxin, Liu Junming, et al. Evaluation of Drought Monitoring Effects in the Main Growth and Development Stages of Winter Wheat Using Vegetation Temperature Condition Index Ⅲ—Impact Evaluation of Drought on Wheat Yield[J]. Agricultural Research in the Arid Areas, 2014, 32(5): 218-222 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201405038.htm
[19] 孙威, 王鹏新, 韩丽娟, 等. 条件植被温度指数干旱监测方法的完善[J]. 农业工程学报, 2006, 22(2): 22-26 doi: 10.3321/j.issn:1002-6819.2006.02.006 Sun Wei, Wang Pengxin, Han Lijuan, et al. Further Improvement of the Approach to Monitoring Drought Using Vegetation and Temperature Condition Indexes from Multi-Years Remotely Sensed Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 22-26 doi: 10.3321/j.issn:1002-6819.2006.02.006
[20] 王鹏新, 荀兰, 李俐, 等. 基于时间序列叶面积指数傅里叶变换的作物种植区域提取[J]. 农业工程学报, 2017, 33(21): 207-215 doi: 10.11975/j.issn.1002-6819.2017.21.025 Wang Pengxin, Xun Lan, Li Li, et al. Extraction of Planting Areas of Main Crops Based on Fourier Transformed Characteristics of Time Series Leaf Area Index Products[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 207-215 doi: 10.11975/j.issn.1002-6819.2017.21.025
[21] Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT Cropping System Model[J]. European Journal of Agronomy, 2003, 18(3/4): 235-265
[22] 解毅, 王鹏新, 王蕾, 等. 基于作物及遥感同化模型的小麦产量估测[J]. 农业工程学报, 2016, 32(20): 179-186 doi: 10.11975/j.issn.1002-6819.2016.20.023 Xie Yi, Wang Pengxin, Wang Lei, et al. Estimation of Wheat Yield Based on Crop and Remote Sensing Assimilation Models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 179-186 doi: 10.11975/j.issn.1002-6819.2016.20.023
[23] 王维, 刘翔舸, 王鹏新, 等. 条件植被温度指数的四维变分与集合卡尔曼同化方法[J]. 农业工程学报, 2011, 27(12): 184-190 doi: 10.3969/j.issn.1002-6819.2011.12.035 Wang Wei, Liu Xiangge, Wang Pengxin, et al. Application of 4DVAR and EnKF Approaches for Assimilating Vegetation Temperature Condition Index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 184-190 doi: 10.3969/j.issn.1002-6819.2011.12.035
[24] 张显峰, 赵杰鹏. 干旱区土壤水分遥感反演与同化模拟系统研究[J]. 武汉大学学报·信息科学版, 2012, 37(7): 794-799 http://ch.whu.edu.cn/article/id/254 Zhang Xianfeng, Zhao Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799 http://ch.whu.edu.cn/article/id/254
[25] Bi H Y, Ma J W, Wang F J. An Improved Particle Filter Algorithm Based on Ensemble Kalman Filter and Markov Chain Monte Carlo Method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2): 447-459 doi: 10.1109/JSTARS.2014.2322096
[26] Xu L, Abbaszadeh P, Moradkhani H, et al. Conti nental Drought Monitoring Using Satellite Soil Moisture, Data Assimilation and an Integrated Drought Index[J]. Remote Sensing of Environment, 2020, 250: 112028 doi: 10.1016/j.rse.2020.112028
[27] 郭新, 王乃江, 张玲玲, 等. 基于Google Earth Engine平台的关中冬小麦面积时空变化监测[J]. 干旱地区农业研究, 2020, 38(3): 275-280 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ202003037.htm Guo Xin, Wang Naijiang, Zhang Lingling, et al. Monitoring of Spatial-Temporal Change of Winter Wheat Area in Guanzhong Region Based on Google Earth Engine[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 275-280 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ202003037.htm
[28] 王鹏新, 陈弛, 张树誉, 等. 基于LAI和VTCI及Copula函数的冬小麦单产估测[J]. 农业机械学报, 2021, 52(10): 255-263 doi: 10.6041/j.issn.1000-1298.2021.10.026 Wang Pengxin, Chen Chi, Zhang Shuyu, et al. Winter Wheat Yield Estimation Based on Copula Function and Remotely Sensed LAI and VTCI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 255-263 doi: 10.6041/j.issn.1000-1298.2021.10.026
[29] Houtekamer P L, Mitchell H L. Data Assimilation Using an Ensemble Kalman Filter Technique[J]. Monthly Weather Review, 1998, 126(3): 796-811 doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
[30] 韩培, 舒红, 许剑辉. 顺序数据同化算法的敏感性分析[J]. 测绘科学技术学报, 2015, 32(5): 483-488 doi: 10.3969/j.issn.1673-6338.2015.05.010 Han Pei, Shu Hong, Xu Jianhui. Sensitivity Analysis of the Sequential Data Assimilation Methods[J]. Journal of Geomatics Science and Technology, 2015, 32(5): 483-488 doi: 10.3969/j.issn.1673-6338.2015.05.010
[31] Djuric P M, Vemula M, Bugallo M F. Target Tracking by Particle Filtering in Binary Sensor Networks[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2229-2238 doi: 10.1109/TSP.2007.916140
[32] Ito K, Xiong K. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927 doi: 10.1109/9.855552
[33] 王鹏新, 冯明悦, 梅树立, 等. 条件植被温度指数的多尺度特性分析与应用[J]. 武汉大学学报·信息科学版, 2018, 43(6): 915-921 doi: 10.13203/j.whugis20160105 Wang Pengxin, Feng Mingyue, Mei Shuli, et al. Analysis and Application of the Multi-Scale Characteristics of Vegetation Temperature Condition Index[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 915-921 doi: 10.13203/j.whugis20160105
-
期刊类型引用(3)
1. 周永章,陈川,张旗,王功文,肖凡,沈文杰,卞静,王亚,杨威,焦守涛,刘艳鹏,韩枫. 地质大数据分析的若干工具与应用. 大地构造与成矿学. 2020(02): 173-182 . 百度学术
2. 王叶晨梓,杜震洪,张丰,刘仁义. 面向分片地图的多分辨率格点数据统一存取方法. 浙江大学学报(理学版). 2017(05): 584-590 . 百度学术
3. 朱建章,石强,陈凤娥,史晓丹,董泽民,秦前清. 遥感大数据研究现状与发展趋势. 中国图象图形学报. 2016(11): 1425-1439 . 百度学术
其他类型引用(6)