Abstract:
Objectives Two earthquakes with a distance less than 40 km occurred in Menyuan, Qinghai Province, China, including Mw 5.9 earthquake on 26th January 2016 and Mw 6.7 earthquake on 8th Ja-nuary 2022.
Methods The interferometric synthetic aperture radar (InSAR) technique was utilized to process Sentinel-1A radar images from both ascending and descending tracks to retrieve high resolution coseismic surface displacement maps for these two Menyuan earthquakes. The coseismic surface displacements were then inverted to determine the fault geometry parameters and the non-uniform fault slip distributions with a dislocation model in an elastic half-space.
Results The results show that the 2016 Menyuan earthquake was a reverse event on a buried fault with a maximum surface displacement of 6.7 cm and 7.0 cm on the ascending and descending tracks, respectively. The maximum slip on the fault plane reached 0.53 m and concentrated at depths of 4-12 km. The 2022 Menyuan earthquake ruptured along the NWW-SEE strike with a maximum surface displacement of 78 cm in the satellite radar line of sight and a maximum fault slip of 3.5 m occurred at a depth of approximately 4 km.
Conclusions Considering the tectonic settings around the Lenglongling fault zone, the 2022 Menyuan earthquake is likely to occure in the western segment of the left-lateral Lenglongling fault, with its western end extending westward to the Tuolaishan fault. By calculating the coulomb failure stress changes (CFS), it is inferred that the 2016 Menyuan earthquake generated considerable positive CFS which might have triggered the 2022 Menyuan earthquake.