不等式约束下加乘性混合误差模型的简单迭代解法

王乐洋, 韩澍豪

王乐洋, 韩澍豪. 不等式约束下加乘性混合误差模型的简单迭代解法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(6): 996-1004. DOI: 10.13203/j.whugis20210659
引用本文: 王乐洋, 韩澍豪. 不等式约束下加乘性混合误差模型的简单迭代解法[J]. 武汉大学学报 ( 信息科学版), 2024, 49(6): 996-1004. DOI: 10.13203/j.whugis20210659
WANG Leyang, HAN Shuhao. A Simple Iterative Solution for Mixed Additive and Multiplicative Random Error Model with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 996-1004. DOI: 10.13203/j.whugis20210659
Citation: WANG Leyang, HAN Shuhao. A Simple Iterative Solution for Mixed Additive and Multiplicative Random Error Model with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 996-1004. DOI: 10.13203/j.whugis20210659

不等式约束下加乘性混合误差模型的简单迭代解法

基金项目: 

国家自然科学基金 42174011

国家自然科学基金 41874001

详细信息
    作者简介:

    王乐洋,博士,教授,研究方向为大地测量反演及大地测量数据处理。wleyang@163.com

  • 中图分类号: P207

A Simple Iterative Solution for Mixed Additive and Multiplicative Random Error Model with Inequality Constraints

  • 摘要:

    在大地测量领域中,现有的处理不等式约束的方法大多都是基于加性误差的模型,包括高斯马尔可夫模型和变量误差模型,鲜有对于加乘性混合误差模型处理方法的研究。为了拓展附有不等式约束的加乘性混合误差的方法,基于最小二乘原理并应用零权和无限权的思想,通过约束条件构建了惩罚函数,推导了在不等式约束下加乘性混合误差的一种简单迭代解法,分析了简单迭代解法在加乘性混合误差模型中的缺陷,在原有方法的基础上在惩罚项前加入了一个随迭代次数增加而增加的惩罚因子。通过算例评估分析可知,改进后的简单迭代法能够有效解决原有方法用于处理附有不等式约束的加乘性混合误差模型时不收敛的问题。通过对比其他方案可知,所提方法能够得到更好的参数估值,证明了该方法的有效性。同时,所提方法结构简单,易于实现,能够适用于大批量的数据处理。

    Abstract:
    Objectives 

    With the development of modern observation techniques, the processing methods which only consider additive errors cannot meet the requirements. Most of the existing methods for dealing with inequality constraints are based on additive error models, including Gaussian-Markov model and errors-in-variables model, while the processing methods for mixed additive and multiplicative (MAM) random error models are rare.

    Methods 

    Based on the least squares principle and the ideas of zero and infinite weights, we construct a penalty function with the given inequality constraints, and derive the simple iterative method (SIM) for the estimation of MAM parameters under the inequality constraints. Then, we add a penalty factor increasing with the number of iterations before the penalty term to address the defects of the original SIM.

    Results 

    Two sets of cases show that the improved SIM can effectively solve the problem that the original method does not converge when used to deal with MAM error models with inequality constraints. The structure of improved SIM is simple and easy to implement. And it can obtain better parameter estimation compared with other schemes.

    Conclusions 

    The feasibility and effectiveness of the improved SIM for parameter estimation of MAM error models with inequality constraints are verified, and it can be applied to the processing of large batches of data.

  • http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210659

  • 图  1   算法流程图

    Figure  1.   Algorithm Flowchart

    图  2   未受影响的直线与受加乘性混合误差影响的坐标点

    Figure  2.   Unaffected Lines and Coordinate Points Affected by Mixed Additive and Multiplicative Random Errors

    图  3   惩罚因子对算法结果的影响

    Figure  3.   Influence of Penalty Factor on Algorithm Results

    图  4   4种方法在各批次中的二范数

    Figure  4.   2-Norm of Four Methods in Each Batch

    图  5   未受影响和受加乘性混合误差影响的DEM

    Figure  5.   Unaffected and Affected by Mixed Additive and Multiplicative Error of DEM

    图  6   惩罚因子对算法结果的影响(算例2⁃2)

    Figure  6.   Influence of Penalty Factor on Algorithm Results (Case 2⁃2)

    表  1   4种方法直线拟合的参数估值结果(算例1)

    Table  1   Parameter Estimation Results of Four Methods(Case 1)

    方案β̂1/mβ̂2/mΔβ
    LS6.9915.1721.172
    WLS7.03214.3480.349
    BCWLS7.01314.3340.334
    SIM7.04114.1680.173
    真值714
    下载: 导出CSV

    表  2   4种方法的参数估计结果(算例2⁃1)

    Table  2   Parameter Estimation Results of Four Methods (Case 2-1)

    方法β̂1/mβ̂2/mβ̂3/mβ̂4/mβ̂5/mβ̂6/mβ̂7/mβ̂8/mΔβ
    LS104.32776.90383.84068.889186.53265.938210.453152.26610.677
    WLS105.04276.96585.47770.860187.21866.574211.900152.8759.301
    BCWLS104.10176.40684.68470.002185.47965.996210.037151.6249.240
    SIM104.29175.12484.74473.751187.70864.654209.406153.9556.889
    真值104.00075.00085.00079.000184.00066.000210.000152.000
    下载: 导出CSV

    表  3   4种方法的参数估计结果(算例2⁃2)

    Table  3   Parameter Estimation Results of Four Methods (Case 2-2)

    方法β̂1/mβ̂2/mβ̂3/mβ̂4/mβ̂5/mβ̂6/mβ̂7/mβ̂8/mΔβ
    LS104.11171.21485.91271.166184.87866.128209.400153.3638.919
    WLS105.54973.60885.93471.987185.74366.627212.135153.5468.048
    BCWLS104.49572.89285.10471.264184.03965.883209.852152.1348.037
    SIM105.26673.07285.45772.166183.79066.719211.469152.7127.447
    真值104.00075.00085.00079.000184.00066.000210.000152.000
    下载: 导出CSV
  • [1]

    Rodriguez E, Martin J M. Theory and Design of Interferometric Synthetic Aperture Radars[J]. IEEE Proceedings of Radar and Signal Processing, 1992, 139(2): 147.

    [2] 吴星辉, 马海涛, 张杰. 地基合成孔径雷达的发展现状及应用[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1073-1081.

    Wu Xinghui, Ma Haitao, Zhang Jie. Development Status and Application of Ground-Based Synthetic Aperture Radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1073-1081.

    [3] 贾燕, 金双根, 肖智宇, 等. 全球导航卫星系统反射测量土壤水分遥感: 现状与机遇[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1784-1799.

    Jia Yan, Jin Shuanggen, Xiao Zhiyu, et al. Soil Moisture Remote Sensing Using Global Navigation Satellite System-Reflectometry: Current Status and Opportunity[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1784-1799.

    [4]

    Schilizzi R T. Very Long Baseline Interferometry[J]. Radio Science, 1986, 21(4): 665-679.

    [5]

    Xu P L. Despeckling SAR-Type Multiplicative Noise[J]. International Journal of Remote Sensing, 1999, 20(13): 2577-2596.

    [6]

    Painam R K, Manikandan S. A Comprehensive Review of SAR Image Filtering Techniques: Systematic Survey and Future Directions[J]. Arabian Journal of Geosciences, 2021, 14(1): 37.

    [7]

    Lin Q, Allebach J P. Combating Speckle in SAR Images: Vector Filtering and Sequential Classification Based on a Multiplicative Noise Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 647-653.

    [8]

    Xu P L, Shimada S. Least Squares Parameter Estimation in Multiplicative Noise Models[J]. Communications in Statistics⁃Simulation and Computation, 2000, 29(1): 83-96.

    [9] 师芸. 乘性随机误差模型的最小二乘平差与精度评定[J]. 西南交通大学学报, 2014, 49(5): 799-803.

    Shi Yun. Least Squares Adjustment and Accuracy Estimation in Multiplicative Error Models[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 799-803.

    [10] 王乐洋, 陈涛, 邹传义. 病态乘性误差模型的加权最小二乘正则化迭代解法及精度评定[J]. 测绘学报, 2021, 50(5): 589-599.

    Wang Leyang, Chen Tao, Zou Chuanyi. Weighted Least Squares Regularization Iteration Solution and Precision Estimation for Ill-Posed Multiplicative Error Model[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 589-599.

    [11]

    Xu P L, Shi Y, Peng J H, et al. Adjustment of Geodetic Measurements with Mixed Multiplicative and Additive Random Errors[J]. Journal of Geodesy, 2013, 87(7): 629-643.

    [12] 师芸. 加乘性混合误差模型参数估计方法及其应用[J]. 武汉大学学报(信息科学版), 2014, 39(9): 1033-1037.

    Shi Yun. Least Squares Parameter Estimation in Additive/Multiplicative Error Models for Use in Geodesy[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1033-1037.

    [13]

    Wang L Y, Chen T. Virtual Observation Iteration Solution and A-Optimal Design Method for Ill-Posed Mixed Additive and Multiplicative Random Error Model in Geodetic Measurement[J]. Journal of Surveying Engineering, 2021, 147(4): 04021016.

    [14]

    Shi Y, Xu P L. Adjustment of Measurements with Multiplicative Random Errors and Trends[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(11): 1916-1920.

    [15] 朱建军, 谢建, 陈宇波, 等. 附不等式约束平差的理论与方法研究[J]. 测绘工程, 2008, 17(6): 1-5.

    Zhu Jianjun, Xie Jian, Chen Yubo, et al. Research on Theory and Methods of Inequality Constrained Least Squares[J]. Engineering of Surveying and Mapping, 2008, 17(6): 1-5.

    [16]

    Judge G G, Takayama T. Inequality Restrictions in Regression Analysis[J]. Journal of the American Statistical Association, 1966, 61(313): 166-181.

    [17] 谢雪梅, 宋迎春, 肖兆兵. 附不等式约束平差模型的一种快速搜索算法[J]. 武汉大学学报(信息科学版), 2018, 43(9): 1349-1354.

    Xie Xuemei, Song Yingchun, Xiao Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354.

    [18]

    Remondi B W. Real-Time Centimeter-Accuracy GPS: Initializing While in Motion (Warm Start Versus Cold START)[J]. Navigation, 1993, 40(2): 199-208.

    [19]

    Liu X L, Zhou M. A One-Layer Recurrent Neural Network for Non-smooth Convex Optimization Subject to Linear Inequality Constraints[J]. Chaos, Solitons & Fractals, 2016, 87: 39-46.

    [20] 王乐洋, 李海燕, 陈晓勇. 拟牛顿修正法解算不等式约束加权总体最小二乘问题[J]. 武汉大学学报(信息科学版), 2018, 43(1): 127-132.

    Wang Leyang, Li Haiyan, Chen Xiaoyong. A Quasi Newtonian Correction Algorithm for Weighted Total Least Squares Problem with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 127-132.

    [21] 谢建, 龙四春, 李黎, 等. 不等式约束加权整体最小二乘的凝聚函数法[J]. 武汉大学学报(信息科学版), 2018, 43(10): 1526-1530.

    Xie Jian, Long Sichun, Li Li, et al. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530.

    [22] 朱建军, 谢建. 附不等式约束平差的一种简单迭代算法[J]. 测绘学报, 2011, 40(2): 209-212.

    Zhu Jianjun, Xie Jian. A Simple Iterative Algorithm for Inequality Constrained Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 209-212.

    [23] 王乐洋, 邹传义. 乘性误差模型参数估计及精度评定的Sterling插值方法[J]. 武汉大学学报(信息科学版), 2022, 47(2): 219-225.

    Wang Leyang, Zou Chuanyi. Sterling Interpolation Method for Parameter Estimation and Precision Estimation in Multiplicative Error Model[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 219-225.

图(6)  /  表(3)
计量
  • 文章访问数:  891
  • HTML全文浏览量:  107
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 网络出版日期:  2022-05-19
  • 刊出日期:  2024-06-04

目录

    /

    返回文章
    返回