低成本毫米波雷达的室内自定位方法

柳景斌, 王泽民, 吕轩凡, 李维, 尹斐, 仇宏煜

柳景斌, 王泽民, 吕轩凡, 李维, 尹斐, 仇宏煜. 低成本毫米波雷达的室内自定位方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(9): 1399-1408. DOI: 10.13203/j.whugis20210593
引用本文: 柳景斌, 王泽民, 吕轩凡, 李维, 尹斐, 仇宏煜. 低成本毫米波雷达的室内自定位方法[J]. 武汉大学学报 ( 信息科学版), 2023, 48(9): 1399-1408. DOI: 10.13203/j.whugis20210593
LIU Jingbin, WANG Zemin, LÜ Xuanfan, LI Wei, YIN Fei, QIU Hongyu. Indoor Ego‐Localization Method for Low Cost Millimeter Wave Radar[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1399-1408. DOI: 10.13203/j.whugis20210593
Citation: LIU Jingbin, WANG Zemin, LÜ Xuanfan, LI Wei, YIN Fei, QIU Hongyu. Indoor Ego‐Localization Method for Low Cost Millimeter Wave Radar[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1399-1408. DOI: 10.13203/j.whugis20210593

低成本毫米波雷达的室内自定位方法

基金项目: 

国家重点研发计划 2021YFB2501102

武汉市知识创新专项基础研究项目 2022010801010109

武汉市人工智能创新专项 2023010402040029

深圳市科技计划 JCYJ20210324123611032

详细信息
    作者简介:

    柳景斌,博士,教授,主要从事室内和室外定位、智能手机导航、室内移动测绘和GNSS/INS/SLAM集成技术研究。jingbin.liu@whu.edu.cn

  • 中图分类号: P228

Indoor Ego‐Localization Method for Low Cost Millimeter Wave Radar

  • 摘要:

    毫米波雷达已广泛应用于汽车工业等领域,但其用途主要局限于障碍物或特定任务的环境感知方面。目前将低成本单芯片毫米波雷达用于导航定位领域的研究还较少。首先研究了毫米波雷达的原始数据处理原理,然后设计了一种基于低成本单芯片毫米波雷达的室内自定位方法。该方法利用DBSCAN(density‐based spatial clustering of applications with noise)算法提取质心特征点,通过最近邻准则匹配质心特征点对,构造非线性优化函数以及使用列文伯格‐马夸尔特方法求解定位结果。实验证明, 利用低成本单芯片毫米波雷达可以实时进行室内导航定位解算。在静止条件下,其平均水平定位精度可达亚厘米级(均值为0.82 cm,标准差为0.47 cm); 在动态条件下,其绝对轨迹误差可达0.66 m,平均航向角误差可达4.58°,可以说明低成本毫米波雷达自定位的可行性。最后还讨论了低成本毫米波雷达在导航定位中存在的问题及可行的研究思路。

    Abstract:
    Objectives 

    Millimeter wave radar has been widely used in automotive industry and other fields, but its application is mainly limited to the environmental perception of obstacles or specific tasks. At pres‍ent, there is little research on the application of millimeter wave radar in the field of navigation and positioning.

    Methods 

    This paper first studies the raw data processing principle of millimeter wave radar, and then designs an indoor ego‐localization method which only depends on a low‐cost millimeter wave radar. The process mainly includes extracting centroid feature points using density based spatial clustering of applications with noise(DBSCAN) algorithm, matching centroid feature point pairs through nearest neighbor criterion, constructing nonlinear optimization function and solving positioning results using levenberg marquardt method.

    Results and Conclusions 

    Experiments show that indoor navigation and positioning can be solved in real time by using a low‐cost millimeter wave radar. Under static conditions, the average horizontal positioning accuracy can reach sub centimeter level (mean value is 0.82 cm and standard deviation is 0.47 cm). Under dynamic conditions, the absolute trajectory error can reach 0.66 m and the average head‍ing angle error can reach 4.58°, which shows the feasibility of ego‐localization of low‐cost millimeter wave radar. Finally, this paper discusses the problems and feasible research ideas of low‐cost millimeter wave radar in navigation and positioning.

  • 图  1   毫米波雷达工作流程图

    Figure  1.   Millimetre Wave Radar Workflow

    图  2   线性调频脉冲信号(振幅‐时间图)

    Figure  2.   Chirp Signal (Amplitude‐Time Plot)

    图  3   线性调频脉冲信号(频率‐时间图)

    Figure  3.   Chirp Signal (Frequency‐Time Plot)

    图  4   中频信号示意图

    Figure  4.   Intermediate Frequency Signal Plot

    图  5   Doppler FFT示意图

    Figure  5.   Doppler FFT Plot

    图  6   角度估计示意图

    Figure  6.   Angle of Arrival of Objects

    图  7   CFAR目标检测示意图

    Figure  7.   CFAR Object Detection Plot

    图  8   毫米波雷达自定位算法流程图

    Figure  8.   Millimetre Wave Radar Based Ego‑Localization Workflow

    图  9   距离‐速度图

    Figure  9.   Range‐Velocity Plot

    图  10   恒虚警算法目标提取结果

    Figure  10.   CFAR Object Detection Results

    图  11   AWR1843 BOOST评估板

    Figure  11.   AWR1843 BOOST

    图  12   实验场景和实验设备

    Figure  12.   Experimental Scene and Equipment

    图  13   毫米波雷达原始数据与质心特征点

    Figure  13.   Millimeter Wave Radar Origin Data and Features

    图  14   静止条件下毫米波雷达自定位结果

    Figure  14.   Millimeter Wave Radar Ego‑Localization Under the Static Condition

    图  15   手持激光雷达设备(iLocator)

    Figure  15.   Handheld LiDAR Equipment (iLocator)

    图  16   毫米波雷达的自定位与手持激光雷达设备的定位对比结果

    Figure  16.   Comparison of Ego‑Localization Results Between Millimetre Wave Radar and Handheld LiDAR Equipment

    表  1   3个场景的绝对轨迹误差和平均航向角误差

    Table  1   Absolute Trajectory Error and Average Heading Angle Error of Three Scenes

    场景编号 绝对轨迹误差/m 平均航向角误差/(°)
    场景一 1.30 6.27
    场景二 0.66 4.58
    场景三 1.87 10.91
    下载: 导出CSV
  • [1] 陈锐志, 叶锋. 基于Wi‐Fi信道状态信息的室内定位技术现状综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2064-2070. doi: 10.13203/j.whugis20180176

    Chen Ruizhi, Ye Feng. An Overview of Indoor Positioning Technology Based on Wi‐Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070 doi: 10.13203/j.whugis20180176

    [2] 柳景斌, 黄百川, 张斌, 等. 利用双天线商用Wi‐Fi信道状态信息估计到达角[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2167-2172. doi: 10.13203/j.whugis20180178

    Liu Jingbin, Huang Baichuan, Zhang Bin, et al. AOA Estimation Based on Channel State Information Extracted from Wi‐Fi with Double Antenna[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2167-2172 doi: 10.13203/j.whugis20180178

    [3] 陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202102002.htm

    Chen Ruizhi, Guo Guangyi, Ye Feng, et al. Tightly‐Coupled Integration of Acoustic Signal and MEMS Sensors on Smartphones for Indoor Position‍ing[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202102002.htm

    [4] 王锐. 基于行人航位推算(PDR)技术的室内导航系统[D]. 南京: 南京邮电大学, 2019.

    Wang Rui. A Pedestrian Dead Reckoning (PDR) Based Indoor Navigation System[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019

    [5]

    Campos C, Elvira R, Rodríguez J J G, et al. ORB‐SLAM3: An Accurate Open‐Source Library for Visual, Visual‐Inertial, and Multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. doi: 10.1109/TRO.2021.3075644

    [6]

    Mur‐Artal R, Montiel J M M, Tardós J D. ORB‐SLAM: A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671

    [7]

    Qin T, Li P L, Shen S J. VINS‐Mono: A Robust and Versatile Monocular Visual‐Inertial State Estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. doi: 10.1109/TRO.2018.2853729

    [8]

    Ji Z, Singh S. Visual‐LiDAR Odometry and Mapping: Low‐Drift, Robust, and Fast[C]// IEEE International Conference on Robotics & Automation, Seattle, WA, USA, 2015.

    [9]

    Wang Z, Zhang Q, Li J, et al. A Computationally Efficient Semantic SLAM Solution for Dynamic Scenes[J]. Remote Sensing, 2019, 11(11): 1363. doi: 10.3390/rs11111363

    [10]

    Barnes D, Gadd M, Murcutt P, et al. The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar Dataset[C]// IEEE International Conference on Robotics and Automation, Paris, France, 2020.

    [11]

    Cen S H, Newman P. Precise Ego‐Motion Estimation with Millimeter‐Wave Radar Under Diverse and Challenging Conditions[C]// IEEE International Conference on Robotics and Automation, Brisbane, Australia, 2018.

    [12]

    Cen S H, Newman P. Radar‐Only Ego‐Motion Estimation in Difficult Settings via Graph Matching[C]// International Conference on Robotics and Automation, Montreal, Canada, 2019.

    [13]

    Hong Z, Petillot Y, Wang S. Radar SLAM: Radar Based Large‐Scale SLAM in All Weathers[C]//IEEE International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020.

    [14]

    Kung P C, Wang C C, Lin W C. A Normal Distribution Transform‐Based Radar Odometry Designed for Scanning and Automotive Radars[C]// IEEE International Conference on Robotics and Automation, Xi􀆳an, China, 2021.

    [15]

    Burnett K, Schoellig A P, Barfoot T D. Do We Need to Compensate for Motion Distortion and Doppler Effects in Spinning Radar Navigation?[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 771-778. doi: 10.1109/LRA.2021.3052439

    [16] 郑睿, 李方东. 基于调频毫米波的安防移动机器人导航系统[J]. 仪器仪表学报, 2021, 42(3): 105-113. doi: 10.19650/j.cnki.cjsi.J2007261

    Zheng Rui, Li Fangdong. Navigation System of Security Mobile Robot Based on FM Millimeter Wave[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 105-113 doi: 10.19650/j.cnki.cjsi.J2007261

    [17] 王彦平, 刘宇通, 李洋, 等. 基于CSM的毫米波雷达点云匹配定位方法[C]//第十四届全国信号和智能信息处理与应用学术会议, 中国, 北京, 2021.

    Wang Yanping, Liu Yutong, Li Yang, et al. PointCloud Matching Localization Method for Millimeter Wave Radar Based on CSM[C]// National Confer‍ence on Signal and Intelligent Information Process‍ing and Application, China, Beijing, 2021

    [18]

    Ester M, Kriegel H, Sander J, et al. A Density‐Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//SIGKDD, Portland, Oregon, USA, 1996.

    [19]

    Moré J J. The Levenberg‐Marquardt Algorithm: Implementation and Theory[M]//Lecture Notes in Mathematics. Berlin, Germany: Springer, 1978.

    [20]

    Hess W, Kohler D, Rapp H, et al. Real‐Time Loop Closure in 2D LiDAR SLAM[C]//IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 2016.

    [21]

    Sturm J, Engelhard N, Endres F, et al. A Benchmark for the Evaluation of RGB‐D SLAM Systems[C]// IEEE International Conference on Intelligent Robots and Systems, Vilamoura‐Algarve, Portugal, 2012.

  • 期刊类型引用(5)

    1. 吕轩凡,柳景斌,毛井锋. 一种毫米波雷达里程计自主定位技术. 测绘通报. 2024(07): 1-5 . 百度学术
    2. 王余珊,郑建立. 融合毫米波雷达和惯性传感器的行人定位系统研究. 智能计算机与应用. 2024(08): 191-196 . 百度学术
    3. 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 . 百度学术
    4. 龚树凤,邓晓强,方一鸣,贾立新,吴哲夫. 基于毫米波雷达的室内人员定位与跟踪实验设计. 实验室研究与探索. 2024(11): 52-56 . 百度学术
    5. 黄育夫,熊军,习涛. 基于毫米波雷达的空调节能技术研究. 家电科技. 2022(S1): 176-180 . 百度学术

    其他类型引用(4)

图(16)  /  表(1)
计量
  • 文章访问数:  1947
  • HTML全文浏览量:  392
  • PDF下载量:  306
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-10-11
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2023-09-04

目录

    /

    返回文章
    返回